Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:45:13.371Z Has data issue: false hasContentIssue false

Critical Beha vior of a Depinning Dislocation

Published online by Cambridge University Press:  21 March 2011

Stefano Zapperi
Affiliation:
INFM, Universit[ ]La Sapienza], P.le A. Moro 2, 00185 Roma, Italy
Michael Zaiser
Affiliation:
MPI für Metallforschung, Heisenbergstr.1, D-70569 Stuttgart, Germany
Get access

Abstract

The dynamics of dislocations at yield can be understood within the framew ork of the depinning transition of elastic manifolds in random media. Close to the threshold stress for their long-range motion, the geometry and dynamics of dislocations are characterized by a set of critical exponents. We consider a single flexible dislocation gliding through a random stress field, taking in to account long-range self stresses, and estimate the critical stress where depinning takes place. Simulations of a discretized lattice model confirm the analytical estimate and yield numerical values of the critical exponents which are in agreement with theoretical predictions for an elastic string mo ving on a plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kocks, F., Argon, A.S. and Ashby, M.F., Progr. Mater. Sci. 19 (1975) 1.Google Scholar
2. Kardar, M., Phys. Rep. 301 (1998) 85.Google Scholar
3. Leschhorn, H., Nattermann, T., Stepanow, S., and Tang, L.H., Ann. Physik 6 (1997) 1.Google Scholar
4. Sevillano, J. G., Bouchaud, E. and Kubin, L. P., Scr. Metall. Mater. 25 (1991) 355.Google Scholar
5. D'Anna, G., Benoit, W. and Vinokur, V. M., J. Appl. Phys. 82 (1997) 5983.Google Scholar
6. Foreman, A. J. E., Phil. Mag. 15 (1967) 1011.Google Scholar
7. Wit, G. De and Koeheler, J. S., Phys. Rev. 116 (1959) 1113.Google Scholar
8. Narayan, O. and Fisher, D.S., Phys. Rev. B 48 (1993) 7030.Google Scholar
9. Hirth, J.P. and Lothe, J., Theory of Dislocations, McGraw Hill, New York 1968.Google Scholar
10. Wilkens, M., Acta Metall. 17 (1969) 1155.Google Scholar
11. Zapperi, S. and Zaiser, M., Mater. Sci. Engng. A, in press.Google Scholar
12. Koiller, B. and Robbins, M. O., preprint cond-mat[/]0004183.Google Scholar
13. Cagnoli, G., Gammaitoni, L., Marchesoni, F. and Segoloni, D., Phil. Mag. A 68 (1993) 865.Google Scholar
14. Quinn, T.J., Speake, C.C., and Brown, L.M., Phil. Mag. A 65 (1991) 261.Google Scholar