Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:23:29.479Z Has data issue: false hasContentIssue false

Critical Currents at Grain Boundaries in High Temperature Superconductors

Published online by Cambridge University Press:  18 March 2011

D. Agassi
Affiliation:
Naval Surface Warfare Center, Carderock Division, Bethesda, MD
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
D. K. Christenb
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
G. Duscher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee Department of Material Science and Engineering, North Carolina State University, Raleigh, NC
A. Franceschetti
Affiliation:
Naval Surface Warfare Center, Carderock Division, Bethesda, MD Department of Physics and Astronomy, Vanderbilt University, Nashville TN
S. T. Pantelides
Affiliation:
Naval Surface Warfare Center, Carderock Division, Bethesda, MD Department of Physics and Astronomy, Vanderbilt University, Nashville TN
Get access

Abstract

We present atomic resolution Z-contrast images, electron energy loss spectroscopy (EELS) and theoretical calculations in support of a band-bending model for the effect of grain boundaries on critical currents. In the high angle regime, dislocation cores are closely spaced and the boundary is modeled as a continuous junction, with a width determined by the dislocation density per unit boundary length. This quantitatively explains the approximately exponential reduction in critical current. In the low angle regime, where dislocations are separated by substantial good passages, explicit calculations of flux pinning are presented. Significant differences are found between a strain and band-bending mechanism. Recent data fit the band-bending model and suggest substantial improvement is possible through doping to a flat band condition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T., and Pennycook, S.J., Phys. Rev. Lett. 86, 4056 (2001).Google Scholar
2 Dimos, D., Chaudhari, P., and J. Mannhart Phys. Rev. B41, 4038 (1990).Google Scholar
3 Ivanov, Z. G., Nilsson, P. Å., Winkler, D., Alarco, J. A., Claeson, T., Stepantsov, A., and Tzalenchuk, A., Appl Phys Lett. 59, 3030 (1991).Google Scholar
4 James, E.M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Elect. Micr. 47, 561 (1998).Google Scholar
5 Pennycook, S. J. and Nellist, P. D., in Rickerby, D. G., Valdré, U. and Valdré, G. (eds.) Impact of Electron and Scanning Probe Microscopy on Materials Research, Kluwer Academic Publisers, The Netherlands, p161 (1999).Google Scholar
6 Nellist, P. D. and Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 113, 148 (2000).Google Scholar
7 Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
8 Duscher, G., Browning, N. D., and Pennycook, S. J., Phys. Stat. Sol. (a) 166, 327 (1998).Google Scholar
9 Nellist, P. D. and Pennycook, S. J., Phys. Rev. Lett. 81, 4156 (1998).Google Scholar
10 McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).Google Scholar
11 Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J.-P., and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).Google Scholar
12 McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., and Pennycook, S. J., Ravikumar, V., and Dravid, V. P., Science 266, 102 (1994).Google Scholar
13 McGibbon, M. M., Browning, N. D., McGibbon, A. J., and Pennycook, S. J., Phil. Mag. A73, 625 (1996).Google Scholar
14 Browning, N. D., Pennycook, S. J., Chisholm, M. F., McGibbon, M. M. and McGibbon, A. J., Interface Science 2, 397 (1995).Google Scholar
15 Chisholmand, M. F. Pennycook., S. J. Mater. Res. Soc. Bull. 22, 53 (1997)Google Scholar
16 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1954).Google Scholar
17 Vanderbilt, D., Phys. Rev. B41, 7892 (1990).Google Scholar
18 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, 5188 (1976).Google Scholar
19 Browning, N. D., Chisholm, M. F., Norton, D. P., Lowndes, D. H. and Pennycook, S. J., Physica C 212, 185 (1993).Google Scholar
20 Browning, N. D., Yuan, J. and Brown, L. M., Physica C 202, 12 (1992).Google Scholar
21 Halbritter, J., Phys. Rev. B 46 (1992) 14861, Phys Rev. B 48 (1993) 9735.Google Scholar
22 Hilgenkamp, H. and Mannhart, J., Appl. Phys. Lett. 73, 265 (1998).Google Scholar
23 Chisholm, M. F. and Pennycook, S. J., Nature 351, 47 (1991).Google Scholar
24 Gurevich, A. and Pashitskii, E. A. Phys. Rev. B57, 13878 (1998).Google Scholar
25 Hilgenkamp, H., Mannhart, J. and Mayer, B., Phys. Rev. B53, 14586 (1997).Google Scholar
26 Norton, D. P. et al., Science, 274 (1996) 755.Google Scholar
27 Wu, X. D. et al., Appl. Phys. Lett., 67 (1995) 2397.Google Scholar
28 Agassi, D. and Cullen, J. R., Physica C 316 (1999) 1.Google Scholar
29 Agassi, D., Pande, C. S. and Masumura, R. A., Phys. Rev.B. 52 (1995) 16237.Google Scholar
30 Verebelyi, D. T., Cantoni, C., Budai, J. D., Christen, D. K., Kim, H. J. and Thompson, J. R., Appl. Phys. Lett. 78, 2031 (2001)Google Scholar
31 We plot their results only for boundaries close to a pure tilt geometry (rotation about the caxis).Google Scholar