Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T07:16:21.330Z Has data issue: false hasContentIssue false

Cross-Linked Carbon Nanotube Heat Spreader

Published online by Cambridge University Press:  09 December 2014

Gregory A. Konesky*
Affiliation:
National NanoTech, Inc., 3 Rolling Hill Rd., Hampton Bays, NY 11946, U.S.A.
Get access

Abstract

Among the exceptional properties of isolated individual carbon nanotubes (CNTs), exceptional thermal conductivity along their axis has been demonstrated, However they have also shown poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output power densities are the same, providing no heat spreading effect. We demonstrate the use of energetic argon ion beams to join overlapping CNTs in a thin film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m K. Such thin films may be used as heat spreaders to enlarge the thermal footprint of laser diodes and CPU chips, for example, for enhanced cooling. At higher ion energies and fluence, the CNTs appear to collapse and reform, aligned parallel to the ion beam axis, and form dense high aspect ratio tapered structures. The high surface area of these structures lends themselves to applications in energy storage, for example. We consider the mechanisms of energetic ion interaction with CNTs and junction formation of two overlapping CNTs during the subsequent self-healing process, as well as the formation of high aspect ratio structures under more extreme conditions

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shinde, S. and Goela, J., High Thermal Conductivity Materials, (Springer, 2006).CrossRefGoogle Scholar
Yeh, L., Chu, R., and Agonafer, D., Thermal Management of Microelectronic Equipment, (ASME Press, 2002).CrossRefGoogle Scholar
Lee, H., Thermal Design: Heat sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, (Wiley, 2010).CrossRefGoogle Scholar
Rossi, S., Alomari, M., Zhang, Y., Bychikhin, S., Pogany, D., Weaver, J. and Kohn, E., Diamond and Related Materials 40, 6974 (2013).CrossRefGoogle Scholar
Berber, S., Kwon, Y. and Tomanek, D., PRL 84(20), 46134616 (2000).CrossRefGoogle Scholar
Kim, P., Shi, L., Madjumdar, A. and McEuen, P., PRL 87(21), 215502 (2001).CrossRefGoogle Scholar
Kwon, Y., Saito, S. and Tomanek, D., Phys. Rev. B 58, R13314 (1998).CrossRefGoogle Scholar
Schwab, K., Henriksen, E., Worlock, J. and Roukes, M., Nature 404, 974 (2000).CrossRefGoogle Scholar
Yang, D., Zhang, Q., Chen, G., Yoon, S., Ahn, J., Wang, S., Zhou, Q., Wang, Q. and Li, J., Physical Review B 66, 165440 (2002).CrossRefGoogle Scholar
Shinde, S. and Goela, J., High Thermal Conductivity Materials, (Springer, 2006) 227265.CrossRefGoogle Scholar
Rodriguez-Manzo, J., Krasheninnikov, A. and Banhart, F., Chem. Phys. Chem. 13, 25962600 (2012).CrossRefGoogle Scholar
Krasheninnikov, A. and Banhart, F., Nature Materials 6, 723733 (2007).CrossRefGoogle Scholar
Krasheninnikov, A., Nordlund, K. and Keinonen, J., Physical Review B 66, 245403 (2002).CrossRefGoogle Scholar
Krasheninnikov, A., Nordlund, K., Keinonen, J. and Banhart, F., Nucl. Instrum. Meth. B 202, 224229 (2003).CrossRefGoogle Scholar
Wei, Q., D’Arcy-Gall, J., Ajayan, P. and Ramanath, G., Applied Physics Letters 83, 3581 (2003).CrossRefGoogle Scholar
Loya, M., Park, J., Chen, L., Brammer, K., Bandaru, P. and Jin, S., Nano 3(6), 449454 (2008).CrossRefGoogle Scholar
Ozin, G. and Arsenault, A., Nanochemistry: A Chemical Approach to Nanomaterials, (Royal Society of Chemistry Publishing, 2005).Google Scholar
Salonen, E., Krasheninnikov, A. and Nordlund, K., Nucl. Instrum. Meth. B 193, 603608 (2002).CrossRefGoogle Scholar
Krasheninnikov, A., Nordlund, K., and Keinonen, J., Physical Review B 65, 165423 (2002).CrossRefGoogle Scholar
Krasheninnikov, A., Nordlund, K., Sirvio, M., Salonen, E. and Keinonen, J., Physical Review B 63, 245405 (2001).CrossRefGoogle Scholar
Krasheninnikov, A.. and Nordlund, K., Journal of Applied Physics 107, 071301 (2010).CrossRefGoogle Scholar
Krasheninnikov, A., Nordlund, K., Lehtinen, P., Foster, A., Ayuela, A., and Nieminen, R., Carbon 42, 10211025 (2004).CrossRefGoogle Scholar
Gan, Y., Kotakoski, J., Krasheninnikov, A., Nordlund, K.and Banhart, f., New Journal of Physics 10, 023022 (2008).CrossRefGoogle Scholar
Cahill, D., Rev. Sci. Instrum. 61, 802 (1990).CrossRefGoogle Scholar