Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:17:02.694Z Has data issue: false hasContentIssue false

Crossover from Dimer Nucleation to Adatom Exchange During Submonolayer Epitaxy

Published online by Cambridge University Press:  21 February 2011

G.S. Bales*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

The nucleation and growth of islands in the early stages of epitaxial growth is studied with kinetic Monte Carlo Simulations and self-consistent mean field rate equations. Specifically, adatom exchange and irreversible dimer formation are allowed to compete equally as the origin of two-dimensional islands. The island size distribution and number density are found to satisfy a dynamic crossover scaling form. The critical island size evolves from one to zero with increasing temperature, decreasing flux, and increasing coverage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chambliss, D.D. and Johnson, K.E., Phys. Rev. B 50, 5012 (1994).Google Scholar
2 Zangwill, A. and Kaxiras, E., Surf. Sci. Lett. 326, L483 (1995).Google Scholar
3 Meyer, J.A. and Behm, R.J., Surf. Sci. 322, L275 (1995).Google Scholar
4 Chambliss, D.D., Wilson, R.J., and Chiang, S., J. Vac. Sci. Tech. A 10, 1993 (1992).Google Scholar
5 Johnson, K.E., Chambliss, D.D., Wilson, R.J., and Chiang, S., J. Vac. Sci. Technol. A 11, 1654 (1993).Google Scholar
6 Nielsen, L.P., Besenbacher, F., Stensgaard, I., Laegsgaard, E., Engdahl, C., Stoltze, P., Jacobsen, K.W., and Nørskov, J.K., Phys. Rev. Lett. 71, 754 (1993).Google Scholar
7 He, Y.-L. and Wang, G.-C., Phys. Rev. Lett. 71, 3834 (1993).Google Scholar
8 Adams, D.P., Tedder, L.L., Mayer, T.M., and Swartzentruber, B.S., and Chason, E., Phys. Rev. Lett. 74, 5088 (1995).Google Scholar
9 Venables, J.A., Spiller, G.D., and Hanbücken, M., Rep. Prog. Phys., 47, 399 (1984).Google Scholar
10 Stoyanov, S. and Kashchiev, D., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), Vol. 7, pp 69141.Google Scholar
11 Mo, Y.W., Kleiner, J., Webb, M.B., and Lagally, M.B., Phys. Rev. Lett. 66, 1998 (1991).Google Scholar
12 Brune, H., Röder, H., Boragno, C., and Kern, K., Phys. Rev. Lett. 73, 1955 (1994).Google Scholar
13 Bartelt, M.C. and Evans, J.W., Phys. Rev. B 46, 12675 (1992).Google Scholar
14 Evans, J.W. and Bartelt, M.C., J. Vac. Sci. Technol. A 12, 1800 (1994).Google Scholar
15 Amar, J.G. and Family, F., Phys. Rev. Lett. 74, 2066 (1995).Google Scholar
16 Ratsch, C., Zangwill, A., Šmilauer, P., and Vvedensky, D.D., Surf. Sci. 329, L599 (1995).Google Scholar
17 Bales, G.S. and Chrzan, D.C., Phys. Rev. B 50, 6057 (1994).Google Scholar
18 Bales, G.S., submitted.Google Scholar
19 Bales, G.S. and Chrzan, D.C., Phys. Rev. Lett. 74, 4879 (1995).Google Scholar