Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T10:55:15.439Z Has data issue: false hasContentIssue false

Crystal Structure of and Defects in the Pentacene Thin Film Phase

Published online by Cambridge University Press:  11 February 2011

Lawrence F. Drummy
Affiliation:
Department of Materials Science & Engineering, University of Michigan, 2022 HH Dow Building, Ann Arbor, MI 48109–2136ldrummy@umich.edu, pmiska@umich.edu, milty@umich.edu
Paul K. Miska
Affiliation:
Department of Materials Science & Engineering, University of Michigan, 2022 HH Dow Building, Ann Arbor, MI 48109–2136ldrummy@umich.edu, pmiska@umich.edu, milty@umich.edu
David C. Martin
Affiliation:
Department of Materials Science & Engineering, University of Michigan, 2022 HH Dow Building, Ann Arbor, MI 48109–2136ldrummy@umich.edu, pmiska@umich.edu, milty@umich.edu
Get access

Abstract

The aromatic hydrocarbon pentacene is currently under investigation for use as the active layer in electronic devices such as thin film field effect transistors. We have used X-Ray Diffraction (XRD), Electron Diffraction (ED), Low Voltage Electron Microscopy (LVEM), High Resolution Electron Microscopy (HREM) and molecular modeling to investigate the thin film phase of pentacene. We will report the orthorhombic symmetry and lattice parameters of the thin film phase measured experimentally from these techniques. The structure of extended defects such as dislocations and grain boundaries will influence the electrical and mechanical characteristics of the films. Here we show a direct image of an edge dislocation in the thin film phase and discuss the way in which the lattice accommodates the defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrakopoulos, C. D. et al., Adv. Mat. 11(16), 99 (1999).3.0.CO;2-V>CrossRefGoogle Scholar
2. Holmes, D., Kumaraswamy, S., Matzger, A. J., Vollhardt, K. P. C., Chem. Eur. Journ. 5, 3399 (1999).Google Scholar
3. Mattheus, C. C. et al. Acta. Cryst. C. 57(8), 230 (2001).Google Scholar
4. Minakata, T., Imai, H., Ozaki, M., Saco, K., J. Appl. Phys. 72, 5220 (1992).CrossRefGoogle Scholar
5. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F., Schlom, D. G., IEEE Electron Device Letters 18, 87 (1997).Google Scholar
6. Bouchoms, I. P. M., Schoonveld, W. A., Vrijmoeth, J., Klapwijk, T. M., Synthetic Metals 104, 175 (1999).Google Scholar
7. Liao, J. and Martin, D. C., Macromolecules 29, 568 (1996).Google Scholar
8. Drummy, L. F., Voigt-Martin, I. G., Martin, D. C., Macromolecules 34(21), 7416 (2001).Google Scholar
9. Laquindanum, J. G., Katz, H. E., Lovinger, A. J., Dodabalapur, A., Chem. Mat. 8, 2542 (1996).Google Scholar
10. Frisbee, T. W., Granstrom, E. L., Frisbie, C. D., Adv. Mat. 11(3), 261 (1999).Google Scholar
11. Drummy, L. F., Kübel, C., Lee, D., White, A., Martin, D. C., Adv. Mat. 14(1), 54 (2002).Google Scholar
12. Martin, D. C., Drummy, L. F., Yang, J., Coufalova, E., MRS Proceedings, 711, 107 (2001).Google Scholar
13. Martin, D. C., Thomas, E. L., Polymer 36, 1743 (1995).Google Scholar
14. Voigt-Martin, I. G., Acta Polymerica 47, 311 (1996).Google Scholar
15. Meyer zu Heringdorf, F. J., Reuter, M. C., Tromp, R. M., Nature 412, 517 (2001).CrossRefGoogle Scholar
16. Dimitrakopoulos, C. D. and Malenfant, P., Adv. Mat. 14(2), 99, (2002).3.0.CO;2-9>CrossRefGoogle Scholar
17. Hirsch, P. B., Electron Microscopy of Thin Crystals, (Butterworths, London, 1965).Google Scholar
18. Kübel, C. and Martin, D. C., Phil. Mag. A, 81(7) 1651, (2001).Google Scholar