Hostname: page-component-6bf8c574d5-qdpjg Total loading time: 0 Render date: 2025-02-22T17:05:10.937Z Has data issue: false hasContentIssue false

Crystal to Glass Transition and Melting in TwoDimensions

Published online by Cambridge University Press:  15 February 2011

M. Li
Affiliation:
A. M. Keck Laboratory, 138–78, California Institute of Technology, Pasadena, California 91125 Molecular & Materials Simulation Center, Beekman Institute, 139–74, California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
A. M. Keck Laboratory, 138–78, California Institute of Technology, Pasadena, California 91125
W. A. Goddard III
Affiliation:
Molecular & Materials Simulation Center, Beekman Institute, 139–74, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Thermodynamic properties, structures, defects and their configurations of atwo-dimensional Lennard-Jones (LJ) system are investigated close to crystalto glass transition (CGT) via molecular dynamics simulations. The CGT isachieved by saturating the LJ binary arrays below glass transitiontemperature with one type of the atoms which has different atomic size fromthat of the host atoms. It was found that for a given atomic size differencelarger than a critical value, the CGT proceeds with increasing soluteconcentrations in three stages, each of which is characterized by distinctbehaviors of translational and bond-orientational order correlationfunctions. An intermediate phase which has a quasi-long range orientationalorder but short range translational order has been found to exist prior tothe formation of the amorphous phase. The destabilization of crystallinityis observed to be directly related to defects. We examine these results inthe context of two dimensional (2D) melting theory. Finite size effects onthese results, in particular on the intermediate phase formation, arediscussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, W. L., Prog. Mater. Sci., 30, 81, (1986);Google Scholar
Cahn, R. W. and Johnson, W. L., J. Mater. Sci., 1, 724, (1986).Google Scholar
2. Strandburg, K. J., Rev. Mod. Phys., 60, 161, (1988);Google Scholar
Abraham, F.F., Phys. Rept., 80, 339, (1981).Google Scholar
3. Wolf, D., Okamoto, P. R., Yip, S., et al., J. Mater. Res., 5, 286, (1990);Google Scholar
Okmoto, P. R., and Meshii, M., Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (ASM International, Materials Park, OH, 1990), pp. 33.Google Scholar
4. Born, M., J. Chem. Phys., 7, 591, (1939).Google Scholar
5. Talion, J. L. and Robinson, W. H., Phil. Mag. A, 36, 741, (1977);Google Scholar
Talion, J. L., Phil. Mag. A., 39, 151, (1979).Google Scholar
6. Li, M. and Johnson, W. L., Phys. Rev. Lett., 70, 1120, (1993);Google Scholar
Johnson, W. L., Li, M. and Krill, C. E., J. Non-crystal. Sol., 156, 481, (1993).Google Scholar
7. Krill, C. E., Li, J., Etti, C., Samwer, K. and Yellon, W. B., J. Non-cryst. Sol., 156, 506, (1993).Google Scholar
8. Koike, J., Phys. Rev. B, 47, 7700, (1993).Google Scholar
9. Devanathan, R., Lam, N. Q., Okamoto, P. R. and Meshii, M., MRS Symposia Proceeding No. 291. pp. 653 (MRS, Pittsburgh, 1992).Google Scholar
10. Fecht, H. and Johnson, W. L., Nature, 334, 50, (1988).Google Scholar
11. Luzzi, D. E. (ed.), J. Alloys and Compounds, 194, (1993)Google Scholar
12. Li, M. and Johnson, W. L., Phys. Rev. B, 46, 5237, (1992).Google Scholar
13. Li, M., Johnson, W. L. and Goddard, W. A., unpublished results.Google Scholar
14. Nelson, D. R. and Halperin, B. I., Phys. Rev. B, 19, 2457, (1979).Google Scholar
15. Nelson, D. R., Rubinstein, M. and Spaepen, F., Phil. Mag. A, 46, 105, (1982).Google Scholar
16. Allen, M. P., Frekel, D. and Gignac, W., J. Chem. Phys., 78, 4206, (1983).Google Scholar
17. Johnson, W. L., unpublished results.Google Scholar
18. Egami, T. and Waseda, Y., J. Non-Cryst. Sol, 64, 113, (1984);Google Scholar
Giesson, B. C., Proc. 4th Int. Conf. on Rapidly Quenched Metals, edited by Masumoto, T. and Suzuki, K., (Japan Institute of Metals, Sendai, 1982), Vol. 1, pp. 213.Google Scholar