No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We investigated crystallization processes of amorphous Si (a-Si) during the excimer laser annealing in the complete-melting and near-complete-melting conditions by using molecular dynamics simulations. The initial a-Si configuration was prepared by quenching liquid Si (l-Si) in a MD cell with a size of 50×50×150Å3 composed of 18666 atoms. KrF excimer laser (wavelength: 248nm) annealing processes of a-Si were calculated by taking account of the change in the optical constant upon melting during a laser pulse shot with the intensity Ioexp[−(t–t0)2/ς2] (Io: laser fluence, t: irradiation time). The refractive indices of a-Si and l-Si were set at n+ik=1.0+3.0i and n+ik=1.8+3.0i, respectively. The simulated results well reproduced the observed melting rate and the near-complete-melting and complete-melting conditions were obtained for Io = 160mJ/cm2 and 180mJ/cm2, respectively. It was found that larger grains were obtained in the near-complete-melting condition. Our MD simulations also suggest that nucleation occurs first in a-Si and subsequent crystallization proceeds toward l-Si in the near-complete-melting case.