Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T04:34:59.562Z Has data issue: false hasContentIssue false

Deep centers and fill factor losses in the CIGS devices

Published online by Cambridge University Press:  21 March 2011

M. Igalson
Affiliation:
Faculty of Physics, Warsaw Uniwersity of Technology, Koszykowa 75, 00-662 Warszawa, Poland
A. Kubiaczyk
Affiliation:
Faculty of Physics, Warsaw Uniwersity of Technology, Koszykowa 75, 00-662 Warszawa, Poland
P. Zabierowski
Affiliation:
Faculty of Physics, Warsaw Uniwersity of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Get access

Abstract

The influence of non-equilibrium space charge distributions on the fill factor of ZnO/CdS/Cu(In,Ga)Se2 photovoltaic devices has been investigated. Metastable changes of the amount of charge captured in deep levels have been produced by red or white illumination. Subsequent characterization by current-voltage, capacitance-voltage and admittance spectroscopy has been conducted at low temperature. The fill factor increases after a white light soaking and decreases after illumination of the reverse-biased device with red light at low temperature. This effect has been attributed to the metastable change of net doping concentration in the p+ layer of absorber close to interface. Blue light, absorbed in CdS provides holes to that region neutralizing the negative charge and thus improving the fill factor. The defects responsible for the interface-related metastability are in our opinion the same as those causing the persistent increase of the net doping concentration in the bulk of Cu(In,Ga)Se2 and seem to be related to selenium vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rau, U., Schock, H.-W., Appl. Phys. A 69, 131 (1999) and references thereinGoogle Scholar
2. Zabierowski, P., Rau, U., Igalson, M., Thin Solid Films 387, 147 (2001)Google Scholar
3. Meyer, Th., Schmidt, M., Engelhardt, F., Parisi, J., Rau, U., Eur.Phys. J. AP 8, 43 (1999)Google Scholar
4. Niemegeers, A., Burgelman, M., Herberholz, R., Rau, U., Hariskos, D., Schock, H. W., Progress Photov. 6 (1998) 407 Google Scholar
5. Eisgruber, I. I., Granata, J. E., Sites, J. R., Hou, J., Kessler, J., Solar Energy Mat. & Solar Cells 53, 367 (1998)Google Scholar
6. Igalson, M., Stolt, L., 13th Int. Conf. on Ternary & Multinary Compounds, Hsin-Chu, Taiwan 2000, Jap. J. Appl. Phys. 39, 426 (2000) Supplement 39-1Google Scholar
7. Herberholz, R., Igalson, M., Schock, H. W., J. Appl. Phys. 83, 318 (1998)Google Scholar
8. Niemegeers, A., Gillis, S. and Burgelman, M., Proc. 2nd World Conf. Photovoltaic Solar Energy Conversion, Vienna 1998, p. 672,Google Scholar
9.H European Photovoltaic Solar Energy Conf. Barcelona 1997. p. 2139 Google Scholar
10. Walter, T., Hariskos, D., Herberholz, R., Nadenau, V., Schaffler, R, Schock, H. W., Proc. 13th European Photovoltaic Solar Energy Conf., Nice 1995, p. 1999 Google Scholar
11. Igalson, M., Zabierowski, P., Thin Solid Films 361–362, 371 (2000)Google Scholar
12. Wei, Su-Huai, Zhang, S. B., Zunger, A., J. Appl. Phys. 85, 7214 (1999)Google Scholar