Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:00:39.020Z Has data issue: false hasContentIssue false

Defect Engineered Multi-Walled Carbon Nanotube arrays as Electrochemical Double Layer Capacitors

Published online by Cambridge University Press:  13 May 2013

Rajaram Narayanan
Affiliation:
Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92037-15, U.S.A.
Mark Hoefer
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92037-15, U.S.A.
Prabhakar R. Bandaru
Affiliation:
Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92037-15, U.S.A. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92037-15, U.S.A.
Get access

Abstract

The efficacy of vertically aligned defect engineered multi-walled carbon nanotube (MWCNT) arrays as electrochemical double layer capacitors (EDLCs) was investigated using standard electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We report a ∼ 200% improvement in specific double layer capacitance of MWCNT arrays by extrinsically introducing defects using argon plasma irradiation. The capacitance-voltage characteristics of argon irradiated MWCNTs provide insights into the nature of the defects and their influence on the specific capacitance (capacitance/area).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Emmenegger, C., Mauron, P., Sudan, P., Wenger, P., Hermann, V., and Gallay, R., J. Power Sources 124, 321, 2003 CrossRefGoogle Scholar
Lu, W., Qu, L., Henry, K., and Dai, L., J. Power Sources 189, 1270, 2009 CrossRefGoogle Scholar
Kötz, R. and Carlen, M., Electrochim. Acta 45, 2483, 2000 CrossRefGoogle Scholar
Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., and Zhang, L., Int. J. Hydrogen Energy 34, 4889, 2009 CrossRefGoogle Scholar
Niessen, R. A. H., de Jonge, J., and Notten, P. H. L., J. Electrochem. Soc. 153, A1484, 2006 CrossRefGoogle Scholar
Banks, C. E., Davies, T. J., Wildgoose, G. G., and Compton, R. G., Chem. Commun. (Cambridge) 829, 2005 CrossRefGoogle Scholar
Hoefer, M. and Bandaru, P.R., Appl. Phys. Lett. 95, 183108 (2009)CrossRefGoogle Scholar
Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126, 1970;CrossRefGoogle Scholar
Elman, B., Dresselhaus, M. S., Shayegan, M., Mazurek, H., and Dresselhaus, G., Phys. Rev. B, 25, 4142, 1982; M. Hoefer and P.R. Bandaru, Jour. Appl. Phys. 108, 024305 (2010) CrossRefGoogle Scholar
Robertson, J., Mater. Sci. Eng., R. 37, 129, 2002 CrossRefGoogle Scholar
Electrochemical Methods, Fundamentals and Applications, Bard, Allen J., Faulkner, Larry R. John Wiley and Sons, 2001 Google Scholar
Jiang, Y.Q. et al. ., 22nd IEEE International Conference On MEMS, 2009 Google Scholar
Randin, J-p; Yeager, E; J. Electrochem. Soc., 118, 711714, 1971 CrossRefGoogle Scholar
Wiggins- Camacho, J.D. and Stevenson, K.J., J. Phys. Chem. C 2009,113, 1908219098 CrossRefGoogle Scholar
Electrochemical Supercapacitors, Scientific Fundamentals and Technological applications; Conway, B.E., Kluwer Academic/ Plenum Publishers, New York, 1999 Google Scholar
Hoefer, M. and Bandaru, P., Jour. Eelectrochem. Soc. 160(6), H360H367, 2013 CrossRefGoogle Scholar