Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T13:34:06.106Z Has data issue: false hasContentIssue false

Defects, Dislocations and Degradation of Compound Semiconductors

Published online by Cambridge University Press:  15 February 2011

W. Dexter Johnston Jr.*
Affiliation:
Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Diode lasers and/or LEDs fabricated from the Ga1 − xAlxAs/GaAs or In1 −xGaxAsyP1−y alloy system provide the basis for rapidly developing optical communications systems. These devices are operated at very high optical and electrical power densities, and the inevitable less-than-perfect efficiency results in intense local thermal and athermal lattice excitation. This in turn can lead to generation, motion and growth of extended defect structures including dislocation networks, precipitation of impurities, or phase separation.

For the AlxGa1−xAs material, a predominant degradation effect is the development of so-called <100> “dark line defects” (DLDs). These have been shown to arise from recombination enhanced climb of threading dislocations giving rise to dipole loops of a primarily interstitial character. A less common form, the <110> DLDs, is associated with slip and typically arises from the strain associated with mechanical damage or careless handling or device processing.

The In1−xGaxAsyP 1−y device material affords less energy per recombina ion event by virtue of its smaller band-gaps, but is likely to have more lattice mismatch strain than Ga1−xAlxAs for typical compositions of device interest. Thus slip, <110> DLDs, and precipitates are the commonly observed features of In1−xGaxAsyP1−y degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergh, A. A., Copeland, J.A. and Dixon, R. W., Proc. IEEE 68, 1240 (1980).Google Scholar
2. Shen, C. C., Hsieh, J. J. and Lind, T. A., Appl. Phys. Lett. 30, 353 (1977).Google Scholar
3. Olsen, G. H., Nuese, C. J. and Ettenberg, M., IEEE J. Quant. Electronics QE–15, 688 (1979).Google Scholar
4. Razeghi, M., Poisson, M. A., Hirtz, P., deCremoux, B. and Duchemin, J. P., Paper 1–2, 1982 Electronics Materials Conference, Fort Collins, CO, USA.Google Scholar
5. Tsang, W. T., J. Appl. Phys. 52, 3861 (1981).Google Scholar
6. DeLoach, B. C. Jr., Hakki, B. W., Hartman, R. L. and D'Asaro, L. A., Proc. IEEE 61, 1042 (1973).Google Scholar
7. Petroff, P. M. and Kimnerling, L. C., Appl. Phys. Lett. 29, 461 (1976).Google Scholar
8. Petroff, P. M., Johnston, W. D. Jr. and Hartman, R. L., Appl. Phys. Lett. 25, 226 (1974).Google Scholar
9. Maeda, K., Sato, M., Kubo, A. and Takeuchi, S., Tech. Rep. ISSP A 1243, U. Tokyo, Tokyo, Japan (July 1982) (submitted to J. Appl. Phys.).Google Scholar
10. Mahajan, S., Johnston, W. D. Jr., Pollack, M. A. and Nahory, R. E., Appl. Phys. Lett. 34, 717 (1979).Google Scholar
11. Temkin, H., Zipfel, C. L., DiGiuseppe, M. A., Chin, A. K., Keramidas, V. G. and Saul., R. H. Bell Syst. Tech. Journal (to be published, 1982).Google Scholar
12. Yamamoto, T., Sakai, K. and Akiba, S., IEEE J. Quant. Elect. QE–15, 684 (1979).Google Scholar
13. Temkin, H., Zipfel, C. L. and Keramnidas, V. G., J. Appl. Phys. 52, 5377 (1981).Google Scholar
14. Lang, D. V., Ann. Rev. Mat. Sci. 12, 377 (1982).Google Scholar
15. Johnston, W. D. Jr. in “GaInAsP Alloy Semiconductors,” Pearsall, T. P., Ed., J. Wiley & Sons, Sussex, England (1982).Google Scholar
16. Ishida, K., Kamejima, T., Matsumoto, Y. and Endo, K., Appl. Phys. Lett. 40, 16 (1982).Google Scholar
17. Johnston, W. D. Jr. Epps, G. Y., Nahory, R. E. and Pollack, M. A., Appl. Phys. Lett. 33, 992 (1978).Google Scholar
18. Chin, A. K., DiGiuseppe, M. A. and Bonner, W. A., Mat. Lett. 1, 19 (1982).Google Scholar
19. Chin, A. K., Temkin, A. and Mahajan, S., Bell Syst. Tech. Journal 60, 2187 (1981).Google Scholar
20. Quillec, M., Duguet, C., Benchimol, J. L. and Launois, H., Appl Phys. Lett. 40, 325 (1982).Google Scholar
20a Also Stringfellow, G. B., J. El. Mat. 11, 903 (1982).Google Scholar
21. Temkin, H., Mahajan, S., DiGiuseppe, M. A. and Dentai, A. G., Appl. Phys. Lett. 40, 562 1982, 81–52342–53.Google Scholar
22. Gallagher, P. K. and Chu, S. N. G., J. Phys. Chem. 86, 3246 (1982).Google Scholar
23. Yamakoshi, S., Abe, M., Wada, O., Komiya, S. and Sakurai, T., IEEE J. Quant. Electronics QE–17, 167 (1981).Google Scholar
24. Chin, A. K., Zipfel, C. L., Ermanis, F., Marchut, L., Camlibel, I., DiGiuseppe, M. A., and Chin, B. H., (to be publ. in Trans. IEEE, April, 1983).Google Scholar
25. Holonyak, N. Jr., Kolbas, R. M., Dupuis, R. D. and Dapkus, P. D., IEEE J. Quant. Electronics QE–16, 170 (1980).Google Scholar
26. Petroff, P., Priv. Comm. 1982.Google Scholar
27. Glas, F., Treacy, M. J. M., Quillec, M. and Launois, H.. Paper K-2, 1982 Int. Symp. on GaAs, Albuquerque, NM, USA (Proc. to be publ., Inst. Phys. Conf. Series, 1983).Google Scholar
28. Dutta, N. K., submitted to J. Appl. Phys. (1982).Google Scholar