Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T05:09:34.242Z Has data issue: false hasContentIssue false

Deformation and Coble Creep of Nanocrystalline Materials

Published online by Cambridge University Press:  11 February 2011

C.S. Pande
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375–5343, USA.
R. A. Masumura
Affiliation:
Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375–5343, USA.
Get access

Abstract

Modeling of strengthening by nanocrystalline materials need consideration of dislocation interactions and sliding due to Coble creep, both of which may be acting simultaneously. Such a mechanism is considered in this paper. It is shown that a model based on using Coble creep (with a threshold stress) for finer grains and conventional Hall-Petch strengthening for larger grains, appears to be most successful in explaining experimental results provided care is taken to incorporate into the analysis the effect of grain size distribution occurring in most specimens. A generalized expression relating yield stress to grain size is also proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hall, E. O., Proc. Phys. Soc. London B64, 747 (1951).Google Scholar
2. Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
3. Masumura, R. A., Hazzledine, P. M. and Pande, C. S., Acta Mater. 46, 4527 (1998).Google Scholar
4. Pande, C. S., Masumura, R. A. and Armstrong, R. W., Nanostructured Materials 2, 323 (1993).Google Scholar
5. Sanders, P. G., Eastman, J. A. and Weertman, J. R., Acta Mater. 45, 4019 (1997).Google Scholar
6. Li, J. C. M. and Chou, Y. T., Met. Trans. 1, 1145 (1970).Google Scholar
7. Mitchell, T. E., Hecker, S. S. and Smialek, R. L., Phys. Stat. Sol. 11, 585 (1965).Google Scholar
8. Armstrong, R. W. and Head, A. K., Acta Met. 13, 759 (1965).Google Scholar
9. Pande, C. S. and Masumura, R. A. in Proc. of Sixth International Conf. on Fracture, (1984) p. 857.Google Scholar
10. Louat, N., Acta Met. 33, 59 (1985).Google Scholar
11. Evans, A. G. and Hirth, J. P., Scripta Met. 26, 1675 (1985).Google Scholar
12. Lasalmonie, A. and Strudel, J. L., J. Mat. Sci. 21, 1837 (1986).Google Scholar
13. Pande, C. S. and Masumura, R. A. in Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J. and Froes, F. H., (Warrendale, PA, TMS, 1996) p. 387.Google Scholar
14. Chou, Y.T., J. App. Physics 38, 2080 (1967).Google Scholar
15. Szego, G., Orthogonal Polynomials, (American Mathematical Society 23, Colloquium Publications 1939).Google Scholar
16. Yamakov, V., Wolf, D., Phillpot, S.R. and Glieter, H., Acta Mat. 50(2002) 61.Google Scholar
17. Valiev, Z., Kozolv, E. V., Inanov, Yu. F., Lian, J., Nazarov, A.A. and Brandelet, B., Acta Mat. 42, 2467 (1994).Google Scholar
18. Malygin, G. A., Phys. Solid State, 37, 1248 (1995).Google Scholar
19. Gryaznov, V. G., Gutkin, M. Yu., Romanov, A. E. and Trusov, L. I., J. of Mater. Sci. 28, 4359 (1993).Google Scholar
20. Gutkin, M. Yu. and Ovid'ko, I. A., private communication, 2002.Google Scholar
21. Chokshi, A. H., Rosen, A., Karch, J. and Gleiter, H., Scripta Met. 23, 1679 (1989).Google Scholar
22. Nieh, T. G. and Wadsworth, J., Scripta Met. 25, 955 (1991).Google Scholar
23. Kurzydlowski, K. J., Scripta Met 24, 879 (1990).Google Scholar
24. Swygenhoven, H. V., Spaczer, M., Caro, A. and Farkas, D., Phys. Rev. B, 60, 22 (1999).Google Scholar
25. Swygenhoven, H. V. and Caro, A., Phys. Rev. B, 58, 11246 (1999).Google Scholar
26. Volpp, T., Göring, E., Kuschke, W. M. and Arzt, E., NanoStructured Matls., 8, 855 (1997).Google Scholar
27. Sastry, S. M. L., private communication, 1997.Google Scholar