Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T09:38:59.935Z Has data issue: false hasContentIssue false

Densification of Inert Matrix Fuels Using Naturally-occurring Material as a Sintering Additive

Published online by Cambridge University Press:  31 January 2011

Shuhei Miwa
Affiliation:
miwa.shuhei@jaea.go.jp, Japan Atomic Energy Agency, Oarai Research and Development Center, Higashi-Ibaraki-gun, Japan
Masahiko Osaka
Affiliation:
ohsaka.masahiko@jaea.go.jp, Japan Atomic Energy Agency, Oarai Research and Development Center, Higashi-Ibaraki-gun, Ibaraki, Japan
Toshiyuki Usuki
Affiliation:
usuki.t.aa@m.titech.ac.jp, Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, Meguro-ku, Tokyo, Japan
Toyohiko Yano
Affiliation:
tyano@nr.titech.ac.jp, Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, Meguro-ku, Tokyo, Japan
Get access

Abstract

We proposed a new concept for densification of inert matrix fuels containing minor actinides. In this concept, magnesium silicates which are both a naturally-occurring material and asbestos waste were used as a sintering additive which protects public health by safely disposing of the asbestos waste. In this study, the effects of magnesium silicate additives on the densification behaviors of MgO, Mo and CeO2 were experimentally investigated. The densities of MgO and CeO2 pellets increased with only 1 wt.% additives of MgSiO3 and Mg2SiO4. The densities of Mo pellets showed little change with additives.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Osaka, M. Serizawa, H. Kato, M. Nakajima, K. Tachi, Y. Kitamura, R. Miwa, S. Iwai, T. Tanaka, K. Inoue, M. Arai, Y. J. Nucl. Sci. and Tech. 44, 309(2007).Google Scholar
2. Osaka, M. Miwa, S. Tanaka, K. Sato, I. Hirosawa, T. Obayashi, H. Mondo, K. Akutsu, Y. Ishi, Y. Koyama, S. Yoshimochi, H. Tanaka, K. in Energy and Sustainability, Transaction: Ecology and the Environment vol. 105, edited by Brebbia, C. A. and Popov, V. (Wessex Institute of Technology, UK, 2007), p. 357.Google Scholar
3. Croixmarie, Y. Abonneau, E. Fernandez, A. Konings, R. J. M. Desmouliere, F. Donnet, L. J. Nucl. Mater. 320, 11(2003).Google Scholar
4. Haas, D. Fernandez, A. Nastren, C. Staicu, D. Somers, J. Maschek, W. and Chen, X. Ene. Conv. Manag. 47, 2724(2006).Google Scholar
5. Osaka, M. Koi, M. Takano, S. Yamane, Y. and Misawa, T. J. Nucl. Sci. Technol. 43, 367(2006).Google Scholar
6. Haire, R. G. J. Alloys Compd. 213/214, 185(1994).Google Scholar
7. Gualtieri, A. F. and Tartaglia, A. J. Eur. Ceram. Soc. 20, 11(2007).Google Scholar
8. Kambayashi, S. and Kato, E. J. Chem. Thermodyn., 15 [8], 701(1983).Google Scholar
9. Chang, L. L. Y. Trans. Metall. Soc. AIME 230, 1203(1964).Google Scholar
10. Hal, H. A. M. van and Hintzen, H. T. J. Alloys Compd. 179, 77(1992).Google Scholar
11. Sari, C. Zamorari, E. J. Nucl. Mater. 37, 324(1970).Google Scholar