Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T19:42:05.905Z Has data issue: false hasContentIssue false

Dependence of photoelectrochemical performance on TiO2 nanorod length

Published online by Cambridge University Press:  07 January 2013

Jen-Chun Chou
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
Min-Han Yang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
Jon-Yiew Gan
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
Get access

Abstract

TiO2 is one of the most promising photoanodes for solar-hydrogen conversion by water splitting. Recently, hydrothermally synthetic rutile TiO2 nanorods (NRs) show outstanding photoelectrochemical (PEC) performance in water splitting because of its large surface area, fast carrier transport, and short diffusion length. However, light absorption and carrier transport conflict. Few have investigated the dependence of PEC performance on NR length. This study examines how different TiO2 NR lengths grown on an FTO substrate affects their PEC performance when splitting water. The results show that the optimal absorption length of rutile TiO2 NRs is 3.75 μm. However, under simulated solar illumination (AM1.5 G), the maximum PEC efficiency of these TiO2 NRs is 0.33% at a length of 500 nm. This suggests that carrier transport is the most important variable for improving PEC efficiency.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujishima, A. and Honda, K., Nature 238 (5358), 3738 (1972).CrossRefGoogle Scholar
Gratzel, M., Nature 414 (6861), 338344 (2001).CrossRefGoogle Scholar
Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. and Lewis, N. S., Chem. Rev. 110 (11), 64466473 (2010).CrossRefGoogle Scholar
van de Krol, R., Liang, Y. and Schoonman, J., J. Mater. Chem. 18 (20), 23112320 (2008).CrossRefGoogle Scholar
Sun, J., Zhong, D. K. and Gamelin, D. R., Energy & Environmental Science 3 (9), 12521261 (2010).CrossRefGoogle Scholar
Feng, X., Shankar, K., Varghese, O. K., Paulose, M., Latempa, T. J. and Grimes, C. A., Nano Lett. 8 (11), 37813786 (2008).CrossRefGoogle Scholar
Cho, I. S., Chen, Z., Forman, A. J., Kim, D. R., Rao, P. M., Jaramillo, T. F. and Zheng, X., Nano Lett. 11 (11), 49784984 (2011).CrossRefGoogle Scholar
Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R. C., Wang, C., Zhang, J. Z. and Li, Y., Nano Lett. 11 (7), 30263033 (2011).CrossRefGoogle Scholar
Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D. and Glasscock, J. A., Int. J. Hydrogen Energy 31 (14), 19992017 (2006).CrossRefGoogle Scholar
Crawford, S., Thimsen, E. and Biswas, P., J. Electrochem. Soc. 156 (5), H346H351 (2009).CrossRefGoogle Scholar
Zhang, H., Liu, X., Li, Y., Sun, Q., Wang, Y., Wood, B. J., Liu, P., Yang, D. and Zhao, H., J. Mater. Chem. 22 (6), 24652472 (2012).CrossRefGoogle Scholar
Eagles, D. M., J. Phys. Chem. Solids 25 (11), 12431251 (1964).CrossRefGoogle Scholar