Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T05:11:38.839Z Has data issue: false hasContentIssue false

Design and Optimization of GaN-based Semiconductor Saturable Absorber Mirror Operating at Around 415 nm

Published online by Cambridge University Press:  01 February 2011

Fen Lin
Affiliation:
g0402568@nus.edu.sg, National University of Singapore, Dept of Electrical and Computer Engineering, 4 Engineering Drive 3, Singapore, 117576, Singapore
Ning Xiang
Affiliation:
elexn@nus.edu.sg, National University of Singapore, Dept of Electrical and Computer Engineering, 4 Engineering Drive 3, Singapore, 117576, Singapore
Xin Cai Wang
Affiliation:
xcwang@SIMTech.a-star.edu.sg, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore
Jesudoss Arokiaraj
Affiliation:
j-arokiaraj@imre.a-star.edu.sg, Institute of Materials Research and Engineering, 3 Reseacrh Link, Singapore, 117602, Singapore
Wei Liu
Affiliation:
liuw@imre.a-star.edu.sg, Institute of Materials Research and Engineering, 3 Reseacrh Link, Singapore, 117602, Singapore
Hong Fei Liu
Affiliation:
elelhf@nus.edu.sg, National University of Singapore, Dept of Electrical and Computer Engineering, 4 Engineering Drive 3, Singapore, 117576, Singapore
Soo Jin Chua
Affiliation:
elecsj@nus.edu.sg, National University of Singapore, Dept of Electrical and Computer Engineering, 4 Engineering Drive 3, Singapore, 117576, Singapore
Get access

Abstract

A broadband GaN-based semiconductor saturable absorber mirror (SESAM) with a dielectric SiO2/Si3N4 distributed Bragg reflector (DBR) operating at wavelength around 415 nm was fabricated. Serious oscillation fringes due to the light interference were observed in the SESAM's reflectance spectrum. Such oscillation in reflectivity can impede the function of the saturable absorber. Simulations showed that by removing the sapphire substrate and thinning the GaN buffer layer, oscillation fringes could be significantly reduced. Experiments were carried out and the results agreed well with the simulation prediction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Keller, U., Weingarten, K. J., Kärtner, F. X., Kopf, D., Braun, B., Jung, I. D., Fluck, R.,Hönninger, C., Matuschek, N., and Au, J. A. der, IEEE J. Selected Topics in Quantum Electron., 2, 435 (1996).Google Scholar
2. Keller, U., Nature, 424, 831 (2003).Google Scholar
3. Herda, R., Okhotnikov, O. G., Rafailov, E. U., Sibbett, W., Crittenden, P., and Starodumov, A., IEEE Photon. Technol. Lett., 18, 157 (2006).Google Scholar
4. Xiang, N., Guina, M., Vainionpää, A., Lyytikäinen, J., Suomalainen, S., Saarinen, M., Okhotnikov, O., Sajavaara, T., and Keinonen, J., IEEE J. Quantum Electron., 38, 369 (2002).Google Scholar
5. Barnett, B. C., Rahman, L., Islam, M. N., Chen, Y. C., Bhattacharya, P., Riha, W., Reddy, K. V., Howe, A. T., Stair, K. A., Iwamura, H., Friberg, S. R., and Mukai, T., Optics Lett., 20, 471 (1995).Google Scholar
6. Häring, R., Paschotta, R., Aschwanden, A., Gini, E., Morier-Genoud, F., and Keller, U. , IEEE J. Quantum Electron., 38, 1268 (2002).Google Scholar
7. Lindberg, H., Sadeghi, M., Westlund, M., Wang, S., and Larsson, A., Optics Lett., 30, 2793 (2005).Google Scholar
8. Wilhelm, T., Piel, J., and Ridle, E., Optics Lett., 22, 1494 (1997).Google Scholar
9. Agate, B., Rafailov, E. U., Sibbett, W., Saltiel, S. M., Koynov, K., Tiihonen, M., Wang, S. Laurell, F., Battle, P., Fry, T., Roberts, T., and Noonan, E., IEEE J. Selected Topics in Quantum Electron., 10, 1268 (2004).Google Scholar
10. Xiang, N., Lin, F., Li, H. P., Liu, H. F., Liu, W., Ji, W., and Chua, S. J., Thin Solid Films, available online, (2006).Google Scholar
11. Wong, W. S., Sands, T., and Cheung, N. W., Appl. Phys. Lett., 72, 599 (1998).Google Scholar