Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:02:37.939Z Has data issue: false hasContentIssue false

Detection and Analysis of Phase Separation in Metalorganic Chemical Vapor Deposition InGaN

Published online by Cambridge University Press:  10 February 2011

E. L. Piner
Affiliation:
Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695
N. A. El-Masry
Affiliation:
Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695
S. X. Liu
Affiliation:
Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695
S. M. Bedair
Affiliation:
Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

InGaN films in the 0–50% InN composition range have been analyzed for the occurrence of phase separation. The ñ0.5 jum thick InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) in the 690 to 780°C temperature range and analyzed by θ−20 x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area diffraction (SAD). As-grown films with up to 21% InN were single phase. However, for films with 28% InN and higher, the samples showed a spinodally decomposed microstructure as confirmed by TEM and extra spots in SAD patterns that corresponded to multiphase InGaN. An explanation of the data based on the GaN-InN pseudo-binary phase diagram is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).10.1063/1.322064Google Scholar
2. Singh, R., Doppalapudi, D., Moustakas, T. D., and Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).10.1063/1.118493Google Scholar
3. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).10.1063/1.118455Google Scholar
4. Ho, I. and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).10.1063/1.117683Google Scholar
5. Boutros, K. S., McIntosh, F. G., Roberts, J. C., Bedair, S. M., Piner, E. L., and EI-Masry, N. A., Appl. Phys. Lett. 67, 1797 (1995).Google Scholar
6. Karam, N., Parados, T., Rowland, W., Schetzina, J., El-Masry, N., and Bedair, S. M., Appl. Phys. Lett. 67, 94 (1995).10.1063/1.115519Google Scholar
7. Piner, E. L., Behbehani, M. K., El-Masry, N. A., McIntosh, F. G., Roberts, J. C., and Bedair, S. M., Appl. Phys. Lett. 70, 461 (1997).10.1063/1.118181Google Scholar
8. Piner, E. L., He, Y. W., Boutros, K. S., McIntosh, F. G., Roberts, J. C., Bedair, S. M., and El-Masry, N. A., Mater. Res. Soc. Symp. Proc. 395, 307 (1996).10.1557/PROC-395-307Google Scholar
9. For an explanation of this phenomena consult the following reference: Bedair, S. M., McIntosh, F. G., Roberts, J. C., Piner, E. L., Boutros, K. S., and El-Masry, N. A., J. Cryst. Growth 178, 32 (1997).10.1016/S0022-0248(97)00069-9Google Scholar
10. El-Masry, N. A., Piner, E. L., Liu, S. X., and Bedair, S. M., Appl. Phys. Lett. (Accepted for pub., ˜Jan. 5, 1998).Google Scholar
11. Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Alden Press, Oxford, 1981), pp. 308314.Google Scholar
12. Stringfellow, G. B., J. Cryst. Growth 27, 21 (1974).Google Scholar
13. See, for example, Stringfellow, G. B., Organometallic Vapor-phase Epitaxy: Theory and Practice (Academic Press, San Diego, 1989).Google Scholar