Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T00:57:50.788Z Has data issue: false hasContentIssue false

Detection of Interfaces States Correlated with Layer-by-Layer Oxidation on Si(100)

Published online by Cambridge University Press:  10 February 2011

T. Hattori
Affiliation:
Dept. of Electrical & Electronic Engineering, Musashi Inst. of Technol., 158-8557, Japan, hattori@ipc.musashi-tech.ac.jp
H. Nohira
Affiliation:
Dept. of Electrical & Electronic Engineering, Musashi Inst. of Technol., 158-8557, Japan, hattori@ipc.musashi-tech.ac.jp
Y Teramoto
Affiliation:
Dept. of Electrical & Electronic Engineering, Musashi Inst. of Technol., 158-8557, Japan, hattori@ipc.musashi-tech.ac.jp
N. Watanabe
Affiliation:
Dept. of Electrical & Electronic Engineering, Musashi Inst. of Technol., 158-8557, Japan, hattori@ipc.musashi-tech.ac.jp
Get access

Abstract

The interface state densities near the midgap were measured with the progress of oxidation of atomically flat Si(100) surface. It was found that the interface state distribution in Si bandgap changes periodically with the progress of oxidation. Namely, the interface-state density near the midgap of Si exhibits drastic decrease at oxide film thickness where the surface roughness of oxide film takes its minimum value, while that does not exhibit decrease at the oxide film thickness where the surface roughness takes its maximum value. In order to minimize interface state densities the oxide film thickness should be precisely controlled to within an accuracy of 0.02 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cartier, E. and Stathis, J. H., Microelectronic Engineering 28 (1995) 3.Google Scholar
[2]Ohashi, M. and Hattori, T.: Jpn. J. Appl. Phys. 36 (1997) L397.Google Scholar
[3]Hattori, T., Fujimura, M., Yagi, T. and Ohashi, M.: Appl. Surf Sci. 123/124 (1998) 87.Google Scholar
[4]Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys. 33 (1994) L675.Google Scholar
[5]Nohira, H. and Hattori, T., Appl. Surf. Sci. 117/118 (1997) 119.Google Scholar
[6]Omura, A., Sekikawa, H., and Hattori, T., Appl. Surf. Sci. 117/118 (1997) 127.Google Scholar
[7]Watanabe, N., Omura, A., Nohira, H. and Hattori, T., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Hiroshima, 1998, p. 130.Google Scholar
[8]Lau, W M. and Wu, X. -W., Surf. Sci. 245 (1991) 345.Google Scholar
[9]DiMaria, D. J., Cartier, E., and Arnold, D., J. Appl. Phys. 73 (1993) 3367, and references contained therein.Google Scholar
[10]Gelius, U., Wannberg, B., Baltzer, P, Fellner-Feldegg, H., Carlsson, G., Johansson, C. -G., Larsson, J., Munger, P., and Vergerfos, G., J. Electron Spectrosc. Relat. Phenom. 52 (1990) 747.Google Scholar
[11]Nohira, H., Tamura, Y., Ogawa, H., and Hattori, T., IEICE Trans. Electron. E75–C (1992) 757.Google Scholar
[12]Bennett, M. and Mattsson, L., Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D. C., 1989) p. 38.Google Scholar
[13]Yoshinobu, T., Iwamoto, A., and Iwasaki, H., Jpn. J. Appl. Phys. 33 (1994) 383.Google Scholar
[14]Yasaka, Y., Uenaga, S., Yasutake, H., Takakura, M., Miyazaki, S., and Hirose, M., Mater. Res. Soc. Symp. Proc. 259 (1992) 385.Google Scholar