Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T11:13:40.608Z Has data issue: false hasContentIssue false

Development of Bacterial Cellulose Nanocomposites

Published online by Cambridge University Press:  28 January 2011

Roberto Benson
Affiliation:
Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN
Hugh M. O’Neill
Affiliation:
Oak Ridge National Laboratories, Oak Ridge, TN
B.R. Evans
Affiliation:
Oak Ridge National Laboratories, Oak Ridge, TN
S. Hutchens
Affiliation:
Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN
C.P. Stephens
Affiliation:
Department of Surgery, Graduate School of Medicine, Knoxville, TN
R. Hammonds
Affiliation:
Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN
Get access

Abstract

The development of synthetic materials with inherent bone properties would allow the safe restoration of bone function and reduce current risks associated with the use of grafts. This study investigated the development of bacterial cellulose–hydroxyapatite composite (CdHA-BC) as a potential bone substitute material. Composites of bacterial cellulose (BC) and oxidized, degradable, cellulose (OBC) were mineralized by sequential incubation in calcium chloride and aqueous sodium phosphate to form a calcium deficient hydroxyapatite (CdHA). The CdHA produced in BC and OBC is similar in morphology and chemistry to the hydroxyapatite found in natural bone. The formation of CdHA is supported by XRD, and EDS results. The CdHA-BC and CdHA-OBC composites degrade in a simulated aqueous physiological environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WORKS CITED

1. Szpalski, M. and Gunzburg, R. Orthopedics 202;25 s601 – s609, 2002. 25(5): 601–s09.Google Scholar
2. Khan, S., Diwan, A., Girardi, F., Cammisa, F., Sandhu, H., and Lane, J. J. Acad. Orthop Surgery, 2005. 13: 77–86.Google Scholar
3. Betz, R. Orthopedics, 2002. 25: s561–s70.Google Scholar
4. Hench, L. and Best, S., 14 ceramics, glasses, and glass-ceramics, in Biomaterials science, Ratner, B., et al. , Editors. 2004, Elsevier Academic Press: San Diego, CA. p. 153–70.Google Scholar
5. Currey, J., Collagen and the mechanical properties of bone and calcified cartilage, in Collagen: Structure and mechanics, Fratzl, P., Editor. 2008, Springer. p. 397–420.Google Scholar
6. Wess, T., Collagen fibrillar structure and hierarchies, in Collagen: Structure and mechanics, Fratzl, P., Editor. 2008, Springer. p. 49–80.Google Scholar
7. Gupta, H., Nanoscale deformation mechanisms in collagen, in Collagen: Structure and mechanics, Fratzl, P., Editor. 2008, Springer. p. 155–73.Google Scholar
8. Bielecki, S., Krystoynowicz, E., Turkiewicz, M. and Kalinowska, H., Bacterial cellulose, in Biopolymers, volume 5, polysaccharides i; polysaccharides from prokaryotes, Vandamme, E., et al. , Editors. 2001, Wiley: Weinham. p. 37–90.Google Scholar
9. Fontana, J., Souza, A. D., Fontana, C., Torriani, I., Moresch, J., and Gallotti, B. Appl Biochem Biotechnol, 1990. 2425: 253–64.Google Scholar
10. Novaes, A. Jr., Novaes, A., Grisi, F., Soares, U., and Gabarra, F. Brazilian Dental Journal, 1991. 4: 65–71.Google Scholar
11. Mello, L., Feltrin, L., Neto, P and Ferraz, F. J Neurosurg, 1997. 86: 143–50.Google Scholar
12. Azuma, C., Yasuda, K., Tanabe, Y., Taniguro, H., Kanaya, F., Nakayama, A., Chen, Y., Gong, J., and Osada, Y. JBMR, 2007. 81A: 373–80.Google Scholar
13. Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. Prog in Polym Sci., 2001. 26: 1561–603.Google Scholar
14. Ashman, A. and Gross, J., Synthetic osseous grafting, in In biomaterials engineering and devices human applications, vol. 2: Orthopedic, dental and bone graft applications, Wise, D., et al. , Editors. 2000, Humana Press: Totowa, NJ. p. 133–54.Google Scholar
15. Parikh, S. J Postgrad Med, 2002. 48: 142–48.Google Scholar
16. Ley, J., Cranin, A. and Katzap, M., Biomaterials used in implant dentistry, in In biomaterials engineering and devices human applications, vol. 2: Orthopedic, dental and bone graft applications., Wise, D., et al. , Editors. 2000, Humana Press: Ttowa, NJ. p. 3–24.Google Scholar
17. Kamitakahara, M., Ohtsuki, C. and Miyazaki, T. Journal of Biomaterials Applications, 2008. 23(3): 197–212.Google Scholar
18. Vallet-Regi, M., Rodriguez-Lorenzo, L. and Salinas, A. Solid State Ionics, 1997. 101103: 1279–85.Google Scholar
19. Hutchens, S., Leon, R., O’Neill, H. and Evans, B. Letters in applied microbiology, 2007. 44(2): 175–80.Google Scholar
20. Hutchens, S., Characterization of a calcium-deficient hydroxyapatite-bacterial cellulose composite in Biomedical Engineering. 2007, The University of Tennessee: Knoxville, TN.Google Scholar
21. Painter, T. Carbohydr. Res, 1988. 179: 259–68.Google Scholar
22. Hutchens, S., Synthesis and initial characterization of a calcium-deficient hydroxyapatite-bacterial cellulose, in Biomedical Engineering. 2004, The University of Tennessee: Knoxville, TN.Google Scholar
23. Hutchens, S, Woodward, J, Evans, B and O’Neill, H, Composite material in USPTO.Google Scholar
24. White, D. and Brown, R. Jr, Prospects for the commercialization of the biosynthesis of microbial cellulose, in Cellulose and wood – chemistry and technology., Schuerch, C., Editor. 1989, Wiley: New York. p. 573–90.Google Scholar
25. Bellamy, L., The infra-red spectra of complex molecules. 1966, New York: John Wiley and Sons.Google Scholar
26. Hutchens, S., Benson, R., Evans, B., O’Neill, H., and Rawn, C. Biomaterials, 2006. 27(26): 4661–70.Google Scholar
27. Park, J., Biomaterials science and engineering. 1984, New York: Plenum Publishing.Google Scholar
28. Murugan, R. and Ramakrishna, S. Biomaterials, 2004. 25: 3829–35.Google Scholar
29. Alexander, H., Composites, in Biomaterials science., Ratner, B., et al. , Editors. 1996, Academic Press: San Diego:. p. 94–105.Google Scholar
30. Sauer, G. and Wuthier, R. J. Biol Chem, 1988. 27: 13718–24.Google Scholar
31. Granja, P. and Barbosa, M. J Mat. Sci., 2001. 36: 2163–72.Google Scholar
32. Anderson, H. and Morris, D., Mineralization, in Physiology andpharmacology of bone, Mundy, G., et al. , Editors. 1993, Springer-Verlag: Berlin Heidelberg.Google Scholar