Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T17:52:12.983Z Has data issue: false hasContentIssue false

Development of high k/III-V (InGaAs, InAs, InSb) structures for future low power, high speed device applications

Published online by Cambridge University Press:  09 May 2013

Edward Yi Chang*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan. Department of Electronic Engineering, National Chiao Tung University, Taiwan.
Hai-Dang Trinh
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan.
Yueh-Chin Lin
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan.
Hiroshi Iwai
Affiliation:
Frontier Research Center, Tokyo Institute of Technology, Tokyo, Japan
Yen-Ku Lin
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan.
*
Get access

Abstract

III-V compounds such as InGaAs, InAs, InSb have great potential for future low power high speed devices (such as MOSFETs, QWFETs, TFETs and NWFETs) application due to their high carrier mobility and drift velocity. The development of good quality high k gate oxide as well as high k/III-V interfaces is prerequisite to realize high performance working devices. Besides, the downscaling of the gate oxide into sub-nanometer while maintaining appropriate low gate leakage current is also needed. The lack of high quality III-V native oxides has obstructed the development of implementing III-V based devices on Si template. In this presentation, we will discuss our efforts to improve high k/III-V interfaces as well as high k oxide quality by using chemical cleaning methods including chemical solutions, precursors and high temperature gas treatments. The electrical properties of high k/InSb, InGaAs, InSb structures and their dependence on the thermal processes are also discussed. Finally, we will present the downscaling of the gate oxide into sub-nanometer scale while maintaining low leakage current and a good high k/III-V interface quality.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, H.-S., Ok, I., Zhang, M., Zhu, F., Park, S., Yum, J., Zhao, H., Lee, J. C., Majhi, P., Goel, N., Tsai, W., Gaspe, C. K., and Santos, M. B., Appl. Phys.Lett. 93, 062111 (2008).CrossRefGoogle Scholar
Ko, H., Takei, K., Kapadia, R., Chuang, S., Fang, H., Leu, P. W., Ganapathi, K., Plis, E., Kim, H. S., Chen, S. Y., Madsen, M., Ford, A. C., Chueh, Y. L., Krishna, S., Salahuddin, S., and Javey, A., Nature 468, 286 (2010).CrossRefGoogle Scholar
Milojevic, M., Hinkle, C. L., Aguirre-Tostado, F. S., Kim, H. C., Vogel, E. M., Kim, J., and Wallace, R. M., Appl. Phys.Lett. 93, 252905 (2008).CrossRefGoogle Scholar
Trinh, H. D., Chang, E. Y., Wu, P. W., Wong, Y. Y., Chang, C. T., Hsieh, Y. F., Yu, C. C., Nguyen, H. Q., Lin, Y. C., Lin, K. L., and Hudait, M. K., Appl.Phys.Lett. 97, 042903 (2010).CrossRefGoogle Scholar
O'Connor, E., Monaghan, S., Long, R. D., O’Mahony, A., Povey, I. M., Cherkaoui, K., Pemble, M. E., Brammertz, G., Heyns, M., Newcomb, S. B., Afanas’ev, V. V., and Hurley, P. K., Appl. Phys. Lett. 94, 102902 (2009).CrossRefGoogle Scholar
O'Connor, E., Long, R. D., Cherkaoui, K., Thomas, K. K., Chalvet, F., Povey, I. M., Pemble, M. E., Hurley, P. K., Brennan, B., Hughes, G. and Newcomb, S. B., Appl. Phys. Lett. 92, 022902, (2008).CrossRefGoogle Scholar
Chang, Y. C., Huang, M. L., Lee, K. Y., Lee, Y. J., Lin, T. D., Hong, M., Kwo, J., Lay, T. S., Liao, C. C., and Cheng, K. Y., Appl.Phys. Lett. 92, 072901 (2008).CrossRefGoogle Scholar
Goel, N., Majhi, P., Tsai, W., Warusawithana, M., Schlom, D. G., Santos, M. B., Harris, J. S. and Nishi, Y., Appl. Phys. Lett. 91, 093509 (2007).CrossRefGoogle Scholar
Hwang, Y., Wistey, M. A., Cagnon, J., Engel-Herbert, R., and Stemmer, S., Appl. Phys.Lett. 94, 122907 (2009).CrossRefGoogle Scholar
Brammertz, G., Lin, H.-C., Caymax, M., Meuris, M., Heyns, M., and Passlack, M., Appl.Phys. Lett. 95, 202109 (2009).CrossRefGoogle Scholar
Schroder, D. K., Semiconductor Material and Device Characterizatic, (John Wiley and Sons, Inc., 2006) pp. 321323.Google Scholar
Wheeler, D., Wernersson, L.-E., Fröberg, L., Thelander, C., Mikkelsen, A., Weststrate, K.-J., Sonnet, A., Vogel, E.M., Seabaugh, A., Microelectron. Eng. 86, 15611563 (2009).CrossRefGoogle Scholar
Suzuki, R., Taoka, N., Yokoyama, M., Lee, S., Kim, S. H., Hoshii, T., Yasuda, T., Jevasuwan, W., Maeda, T., Ichikawa, O., Fukuhara, N., Hata, M., Takenaka, M., and Takagi, S., Appl. Phys. Lett. 100, 132906 (2012).CrossRefGoogle Scholar