Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T11:25:20.418Z Has data issue: false hasContentIssue false

Development of sprayed CuInS2 thin film absorber for nanostructured solar cell

Published online by Cambridge University Press:  25 October 2012

Atanas Katerski
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Erki Kärber
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Malle Krunks
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Valdek Mikli
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Arvo Mere
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
Get access

Abstract

CuInS2 (CIS) films were prepared by chemical spray pyrolysis (CSP) method in air using CuCl2, InCl3 and SC(NH2)2 as precursor materials. The effect of the absorber growth temperature in the interval of 240-350 °C and precursors’ molar ratio in the spray solution on the CIS film properties and ZnO/In2S3/CIS-type CSP-deposited thin film solar cell output characteristics has been studied. CIS films were characterized by XRD and EDX, solar cells were characterized by IV curves in dark and under illumination, and junction barrier height (Φb). The highest Φb of 1170 meV and open circuit voltage (Voc) of 560 mV were recorded for the cell with CIS absorber grown at 250 °C. Increasing the CIS deposition temperature decreases Φb and Voc, makes a component of solar cell photosensitive and increases current density. The precursors’ molar ratio in spray solution becomes relevant at CIS growth temperatures higher than 300 °C as deposition of thiourea-rich solutions suppresses oxide formation in CIS layer and contributes to higher open circuit voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Grätzel, M., Nature 353, 737740 (1991).CrossRefGoogle Scholar
Ernst, K., Engelhardt, R., Ellmer, K., Kelch, C., Muffler, H.-J., Lux-Steiner, M. Ch and Könenkamp, R., Thin Solid Films 387, 2628 (2001).CrossRefGoogle Scholar
Goossens, A and Hofhuis, J, Nanotechnology 19, 424018424026 (2008).CrossRefGoogle Scholar
Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G. and Grätzel, M., J.Phys. Chem. Lett. 1, 15241527 (2010)CrossRefGoogle Scholar
Belaidi, A., Dittrich, T., Kieven, D., Tornow, J., Schwarzburg, K. and Lux-Steiner, M., Phys. Status Solidi RRL 2, 172174 (2008)Google Scholar
Krunks, M., Katerski, A., Dedova, T., Oja Acik, I. and Mere, A., Sol. Energy Mater. Sol. Cells 92, 10161019 (2008).CrossRefGoogle Scholar
Krunks, M., Karber, E., Katerski, A., Otto, K., Oja Acik, I., Dedova, T. and Mere, A., Sol. Energy Mater. Sol. Cells 94, 11911195 (2010).CrossRefGoogle Scholar
Mere, A., Kijatkina, O., Rebane, H., Krustok, J. and Krunks, M., J. Phys. Chem. Solids 64, 20252029 (2003).CrossRefGoogle Scholar
Krunks, M., Bijakina, O., Mikli, V., Rebane, H., Varema, T., Altosaar, M. and Mellikov, E., Sol. Energy Mater. Sol. Cells 69, 9398 (2001).CrossRefGoogle Scholar
Katerski, A., Danilson, M., Mere, A. and Krunks, M., Energy Procedia 2, 103107 (2010).CrossRefGoogle Scholar
Oja, I., Nanu, M., Katerski, A., Krunks, M., Mere, A., Raudoja, J. and Goossens, A., Thin Solid Films 480481, 8286 (2005).CrossRefGoogle Scholar
Krunks, M., Kijatkina, O., Rebane, H., Oja, I., Mikli, V. and Mere, A., Thin Solid Films 403404, 2175 (2002).Google Scholar
Otto, K., Katerski, A., Mere, A., Volobujeva, O., Krunks, M., Thin Solid Films 519, 30553060 (2011).CrossRefGoogle Scholar