Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T00:47:24.066Z Has data issue: false hasContentIssue false

A DFT and HRTEM Study on MoS2/Co: Locating Promoters in Catalytic Nanostructures

Published online by Cambridge University Press:  10 March 2011

Manuel Ramos
Affiliation:
Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología-UACJ, Avenida del Charro #610, Cuidad Juárez, MX. CP.32310 University of Texas at El Paso, Materials Research and Technology Institute, 303 Burges Hall, El Paso, Texas 79902, U.S.A
Gilles Berhault
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement, IRCELYON, CNRS –Université de Lyon, Villeurbanne, 69100, France
Jose Rurik Farias
Affiliation:
Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología-UACJ, Avenida del Charro #610, Cuidad Juárez, MX. CP.32310
Jose Trinidad Elizalde
Affiliation:
Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología-UACJ, Avenida del Charro #610, Cuidad Juárez, MX. CP.32310
Domingo Ferrer
Affiliation:
Microelectronics Research Center, University of Texas at Austin, Austin, TX. 78751, U.S.A.
Brenda Torres
Affiliation:
University of Texas at El Paso, Materials Research and Technology Institute, 303 Burges Hall, El Paso, Texas 79902, U.S.A
R. R. Chianelli
Affiliation:
University of Texas at El Paso, Materials Research and Technology Institute, 303 Burges Hall, El Paso, Texas 79902, U.S.A
Get access

Abstract

Locating cobalt promoters on catalytically MoS2 structures is a challenging task to achieve; this is due to the size on those MoS2 nanostructures. Previous reports in the literature indicate that specific locations for Co in MoS2 slabs are (1010)-plane creating either a sulfur-Co or Molybdenum-Co termination edge, due to lower energy required for the permutation Mo, S and Co to occur. We present results obtained from Density Functional Theory study done on the interface between MoS2 and Co9S8 crystal structures; the interface show an interesting thiocubane cluster and it is suspected to be the responsible for Mo-S-Co bonding to exist, along with HDS reaction. In order to understand electronic properties on thiocubane Density of States and Mulliken Population Analysis calculations were implemented using Cambridge Serial Total Energy Package (CASTEP). Results indicate a strong electron donation from Co to Mo through intermediate sulfur atom bonded to both metals while an enhanced metallic character is also found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chianelli, R. R.; Berhault, G.; Raybaud, P.; Kasztelan, S.; Hafner, J. and Toulhoat, H., Applied Catalysis A, 2002, volume 227, pages 8396.Google Scholar
2. Weisser, O., Landa, S., Sulphide Catalysis, Their properties and Applications, Pergamon Press, N.Y. (1973).Google Scholar
3. Bezverkhyy, Igor, Afanasiev, Pavel, Lacroix, Michel, Journal of Catalysis 230 (2005) 133139.Google Scholar
4. Pedraza, F., Cruz-Reyes, J., Acosta, D., Yañez, M.J., Avalos-Borja, M., and Fuentes, S., J. Phys. Cond. Matt. 5 pp. A219A220, (1993).Google Scholar
5. Topsøe, H., Clausen, B.S., Candia, R., Wivel, C., Morup, S., Journal of Catalysis 68, 433 (1981).Google Scholar
6. Byskov, Line S., Nørskov, Jens K., Clausen, Bjerne S., and Topsøe, Henrik, Journal of Catalysis 187, 109122 (1999).Google Scholar
7. Zuriaga-Monroy, C., Martínez-Magadán, José-Manuel, Ramos, E. and Gómez-Baldera, R., Journal of Molecular Catalysis A: Chemical, 313, Issues 1-2, pp. 4954 (2009)Google Scholar
8. Krebs, E., Silvi, B., Daudin, A., Raybaud, P., J. Catal. 260 (2008) 276.Google Scholar
9. Brenner, J.R., Carvill, B.T., Thompson, L.T., App. Organomet. Chem. Vol. 6, 463478 (1992).Google Scholar
10. Bultinc, P., Ayers, P. W., Fias, S., Tiels, K., Van Alsenoy, C., Chemical Physics Letters 444 (2007) 205208.Google Scholar
11. Gómez-Rodríguez, A., Beltrán del Río, L. M., Herrera-Becerra, R., Journal of Ultramicroscopy, 110 (2010), pp. 95104.Google Scholar
12. Voorhoeve, R. J. H., M. Stuiver, J. C.; Journal of Catalysis, Volume 23, Issue 2, (1971), pp. 243252.Google Scholar
13. Daage, M., Chianelli, R.R., Journal of Catalysis, 149, pp. 414427, (1994).Google Scholar
14. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., PayneIIZ, M. C.. Kristallogr. 220 (2005), pp. 567570.Google Scholar
15. Townsend, M.G., Horwood, J.L. et al. Phys. Stat. Solidi A, Vol. 9, pp 137, (1972).Google Scholar
16. Wei, Li, Jun-fang, Chen, Qinyu, He, Teng, Wang, Physica B 405 (2010) 24982502.Google Scholar
17. Chianelli, Russell R. et al. , Catalysis Today 23 (1995) 269281 Google Scholar
18. Bullet, D.W. et al. , J. Phys. C 11 (1978) 4501.Google Scholar