Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:10:36.277Z Has data issue: false hasContentIssue false

Diffusion Mechanisms in Transition-Metal Oxides

Published online by Cambridge University Press:  21 February 2011

N. L. Peterson*
Affiliation:
Materials Science and Technology DivisionArgonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Results are presented for cation self-diffusion in Cu2O and Cr2O3 as a function of temperature and deviation from stoichiometry. A defect model for Cu2O involving neutral and singly charged copper vacancies, electron holes, and singly charged oxygen-interstitial ions is developed and fit to the tracer-diffusion data, the electrical-conductivity data, and the stoichiometry data, yielding concentrations and mobilities of these defects. The diffusion results for Cr2O3 single crystals indicate that cation self-diffusion takes place by triply charged vacancies and that previous diffusion results for polycrystalline Cr2O3 are dominated by grain-boundary diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (J. Wiley and Sons, New York, 1972).Google Scholar
2. Wagner, C. and Hammen, H., Z. Physik. Chem. B40, 197 (1938).Google Scholar
3. O'Keeffe, M. and Moore, W. J., J. Chem. Phys. 36, 3009 (1962).CrossRefGoogle Scholar
4. Mrowec, S., Stoklosa, A., and Godlewski, K., Cryst. Lat. Def. 5, 239 (1974).Google Scholar
5. Yoshimura, M., Revcolevschi, A. and Castaing, J., J. Mater. Sci. 11, 384 (1976).Google Scholar
6. Tretyakov, Y. D., Komarov, V. F., Prosvirhina, N. A., and Kutsenok, I. B., J. Solid State Chem. 5, 157 (1972).Google Scholar
7. Gundermann, J., Hauffe, K., and Wagner, C., Z. Physik. Chem. B37, 148 (1937).Google Scholar
8. O'Keeffe, M. and Moore, W. J., J. Chem. Phys. 35, 1324 (1961).Google Scholar
9. Toth, R. S., Kilkson, R., and Trivich, D., Phys. Rev. 122, 482 (1961).Google Scholar
10. Stecker, K., Ann. Phys. 7, 55 (1959).Google Scholar
11. Maluenda, J., Farhi, R., and Petot-Ervas, G., J. Phys. Chem. Solids 42, 911 (1981).Google Scholar
12. O'Keeffe, M., Ebisuzaki, Y., and Moore, W. J., J. Phys. Soc. Jap. 18, 131 (1963).Google Scholar
13. Perinet, F., Barbezat, S., and Monty, C., J. Physique Colloq. C6, 315 (1980);Google Scholar
Reactivity of Solids Vol. 1, Proc. of the 9th Int. Symp., Cracow 1980, Dyrek, K., Haber, J., and Nowotny, J., eds. (Elsevier, New York, 1982), p. 234.Google Scholar
14. Peterson, N. L. and Wiley, C. L., to be published.Google Scholar
15. Maluenda, J., Farhi, R., and Petot-Ervas, G., J. Phys. Chem. Solids 42, 697 (1981).Google Scholar
16. Tomlinson, W. J. and Yates, J., J. Phys. Chem. Solids 38, 1205 (1977).CrossRefGoogle Scholar
17. Iguchi, E., Yajima, K., and Saito, Y., Trans. Jap. Inst. Met. 14, 423 (1973).Google Scholar
18. Dieckmann, R., Z. Phys. Chem. Neue Folge 107, 189 (1977).Google Scholar
19. Peterson, N. L. and Chen, W. K., J. Phys. Chem. Solids 43, 29 (1982).CrossRefGoogle Scholar
20. Hagel, W. C. and Seybolt, A. V., J. Electrochem. Soc. 108, 1146 (1961).Google Scholar
21. Walters, L. C. and Grace, R. E., J. Appl. Phys. 36, 2331 (1965).Google Scholar
22. Kofstad, P. and Lillerud, K. P., J. Electrochem. Soc. 127, 2410 (1980).Google Scholar
23. Hoshino, K. and Peterson, N. L., to be published in J. Am. Ceram. Soc. (1983).Google Scholar
24. Paladino, A. E. and Kingery, W. D., J. Chem. Phys. 37, 957 (1962).Google Scholar
25. Atkinson, A., private communication, August 1983.Google Scholar