Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T06:53:24.722Z Has data issue: false hasContentIssue false

Direct Write Microbatteries for Next-Generation Microelectronic Devices

Published online by Cambridge University Press:  17 March 2011

Karen E. Swider-Lyons
Affiliation:
Code 6171Naval Research Laboratory Washington, DC 20375-5342, USA, karen.lyons@nrl.navy.mil
Alberto Piqué
Affiliation:
Code 6372Naval Research Laboratory Washington, DC 20375-5342, USA
Craig B. Arnold
Affiliation:
Code 6372Naval Research Laboratory Washington, DC 20375-5342, USA
Ryan C. Wartena
Affiliation:
Code 6171Naval Research Laboratory Washington, DC 20375-5342, USA
Get access

Abstract

Microbatteries and integrated microbattery systems are likely to be the sole power source or a power-source component for the next generation of microelectronic devices. As part of the LEAPS (Laser Engineering of Advanced Power Sources) program, custom-designed microbatteries and ultracapacitors will be integrated in microelectronic circuits for optimum performance. The Naval Research Laboratory's Matrix-Assisted Pulsed-Laser Deposition Direct-Write (MAPLE DW) process is used to rapidly fabricate various primary and secondary (non-rechargeable and chargeable) electrochemical power sources. This laser forward-transfer process can be used to transfer any type of battery material and battery material mixtures, including polymers, hydrated oxides, metals, and corrosive electrolytes. Additional laser micromachining capabilities are used to tailor the battery sizes, interfaces, and configurations. Examples are given for planar RuO2 ultracapacitors and stacked alkaline batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vincent, C. A. and Scrosati, B., Modern Batteries: An Introduction to Electrochemical Power Sources, 2nd ed. (John Wiley & Sons, New York, 1997).Google Scholar
2. Conway, B. E., J. Electrochem. Soc., 138, 1539 (1991).Google Scholar
3. Trasatti, S., Electrochim. Acta, 36, 225 (1991).Google Scholar
4. Zheng, J. P., Cygan, P. J. and Jow, T. R., J. Electrochem. Soc., 142, 2699 (1995).Google Scholar
5. McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E. and Rolison, D. R., J. Phys. Chem. B, 103, 4825 (1999).Google Scholar
6. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. and Evans, C. D., Solid State Ionics, 135, 33 (2000).Google Scholar
7. Piqué, A. and Chrisey, D. B., Editors, Direct-Write Technologies for Rapid Prototyping Applications (Academic Press, San Diego, 2002).Google Scholar
8. Piqué, A., Chrisey, D. B., Auyeung, R. C. Y., Fitz-Gerald, J., Wu, H. D., McGill, R. A., Lakeou, S., Wu, P. K., Nguyen, V. and Duignan, M., Appl. Phys. A, 69 [Suppl.], S279 (1999).Google Scholar
9. Chrisey, D. B., Piqué, A., Fitz-Gerald, J., Ringeisen, B. and Modi, R., Laser Focus World, 113 (2000).Google Scholar
10. Chrisey, D. B., McGill, R. A. and Piqué, A., U.S. Patent No. 6,177,151 (23 January 2001).Google Scholar
11. Swider-Lyons, K. E., Weir, D. W., Love, C. T., Modi, R., Sutto, T., Piqué, A. and Chrisey, D. B., in Power Sources for the New Millennium, edited by Jain, M., Ryan, M. A., Surampudi, S., Marsh, R. A. and Nagarajan, G. (Electrochem. Soc. Proc. 2000–22, Pennington, NJ, 2000) pp. 272276.Google Scholar
12. Piqué, A., Swider-Lyons, K. E., Weir, D. W., Love, C. T. and Modi, R., in Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, edited by Gower, M. C., et. al. (SPIE Proc. 274, Bellingham, WA, 2001) pp. 316322.Google Scholar
13. Arnold, C. B., Wartena, R. C., Piqué, A. and Swider-Lyons, K. E., in Rapid Prototyping Technologies — Tissue Engineering to Conformal Electronics, edited by Chrisey, D.B., et. al. (Mater. Res. Proc., Pittsburgh, PA, 2001) in press.Google Scholar