Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T14:38:57.619Z Has data issue: false hasContentIssue false

Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals

Published online by Cambridge University Press:  10 February 2012

Chi-Chin Wu*
Affiliation:
Oak Ridge Affiliated Universities Maryland, 4692 Millennium Drive, Suite 101, Belcamp MD 21017, U.S.A. Computational and Information Sciences Directorate, U. S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, U.S.A.
Sylvie Aubry
Affiliation:
High Performance Computational Materials Science and Chemistry Group, Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-367, Livermore, CA 94551, U.S.A.
Peter W. Chung
Affiliation:
Computational and Information Sciences Directorate, U. S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, U.S.A.
Athanasios Arsenlis
Affiliation:
High Performance Computational Materials Science and Chemistry Group, Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-367, Livermore, CA 94551, U.S.A.
Get access

Abstract

The formation and strength of dislocations in the hexagonal closed-packed material are studied through dislocation junctions and the critical stress required to completely break them. Dislocation dynamics calculations of junctions are compared to an analytical line tension approximation in order to verify the simulations. Results show agreements between the models. Also the critical shear stress necessary to break a short and a long dislocation junction is computed numerically. Unzipping envelopes are mapped out for these junctions to describe their stability regions as functions of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip systems [2 -1 -1 0] (0 1 -1 0) and [-1 2 -1 0] (0 0 0 1) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirth, J. P. and Lothe, J., “Theory of Dislocations” (Krieger Publishing Company, 2 nd ed. 1982).Google Scholar
2. Hull, D. and Bacon, D. J., “ Introduction to Dislocations” (Elsevier, 2001).Google Scholar
3. Damiano, V.V., Transactions of the Metallurgical Society of AIME, 227, 788 (1963).Google Scholar
4. Osipyan, Y. A. and Smirnova, I. S., J. Phys. Chem. Solids, 32, 1521 (1971).Google Scholar
5. Hirth, J. P., J. Appl. Phys. 32, 700 (1961).Google Scholar
6. Devincre, B., Kubin, L. P., Modelling Simul. Mater. Sci. Eng., 2, 559 (1994).Google Scholar
7. Zhou, S. J., Preston, D. L., Lomdahl, P. S., Beazley, D. M., Science, 279, 1525 (1998).Google Scholar
8. Rodney, D. and Phillips, R., Phys. Rev. Lett., 82, 1704 (1999).Google Scholar
9. Wickham, L. K., Schwarz, K. W., Stölken, J. S., Phys. Rev. Lett., 83, 4574 (1999).Google Scholar
10. Shenoy, V. B., Kukta, R. V., and Phillips, R., Phys. Rev. Lett., 84, 1491 (2000).Google Scholar
11. Zbib, H. M., de la Rubia, R. D., Rhee, M., Hirth, J. P., J. Nucl. Mater., 276, 154 (2000).Google Scholar
12. Dupuy L, L. and Fivel, M. C., Acta Mat., 50, 4873 (2002).Google Scholar
13. Madec, R., Devincre, B., Kubin, L. P., Hoc, T., and Rodney, D., Science, 301, 1879 (2003).Google Scholar
14. Monnet, G., Devincre, B., and Kubin, L. P., Acta Mat., 52, 4317 (2004).Google Scholar
15. Capolungo, L., Acta Mat., 59, 2909 (2011).Google Scholar
16. Frank, F. C. and Read, W. T., in “ Symposium on Plastic Deformation of Crystalline Solids ”, Carnegie Institute of Technology, Pittsburgh, 1950, pp. 44.Google Scholar
17. Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T. G., and Bulatov, V. V., Modelling Simul. Mater. Sci. Eng., 15, 553 (2007).Google Scholar
18. Martinez, E., Marian, J., Arsenlis, A., Victoria, M. and Perlado, J. M., J. Mech. Phys. Sol., 56, 869 (2008).Google Scholar