Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:04:38.739Z Has data issue: false hasContentIssue false

Displacive Phase Transformation in Vanadium - Substituted Lanthanum Niobate*

Published online by Cambridge University Press:  21 February 2011

A. T. Aldred
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
S.-K. Chan
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
M. H. Grimsditch
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
M. V. Nevitt
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
Get access

Abstract

The displacive transformations in complex oxides of the type LaNb1-xVxO4 has been studied by x-ray diffraction and Raman scattering for 0 < x < 0.3. X-ray diffraction results indicate that the transformation from the tetragonal high temperature structure (C4h6) to the monoclinic low-temperature structure (C2h6) is higher than first order and that the transformation temperature Tc is depressed significantly by V substitution. Raman scattering results show that the force constant between the nearest (Nb, V)O4 tetrahedral units behave uniquely compared to others. It softens at Tc as a function of composition and it also softens as a function of temperature as Tc is approached from above.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy.

References

REFERENCES

1. Nevitt, M. V. & Aldred, A. T., in American Chemical Society Symposium on Geochemical Behavior of Disposed Radioactive Wastes, Seattle, Mar. 1983, to be published.Google Scholar
2. Garvie, R. C., Hannink, R. H. & Pascoe, R. T., Nature 258, 703704 (1975).Google Scholar
3. Brixner, L. H., Whitney, J. F., Zumsteg, F. C., & Jones, G. A., Mat. Res. Bull. 12, 1724 (1977).CrossRefGoogle Scholar
4. Tsunekawa, S., Sci. Repts. Insts. Tohoku Univ. 30A, 128 (1981).Google Scholar
5. Aldred, A. T., in American Chemical Society Symposium on Geochemical Behavior of Disposed Radioactive Wastes, Seattle, Mar. 1983, to be published.Google Scholar
6. Aldred, A. T., Mat. Letters 1, 197199 (1983).Google Scholar
7. David, W. I. F., J. Phys. C: Solid State Physics 16, 50935118 (1983), and references therein.CrossRefGoogle Scholar
8. Anaéeva, G. V., Korovkin, A. M., Kudryavtsev, A. B., Kupchikov, A. K., Ryskin, A. I. and Sobol', A. A., Soy. Phys. Solid State 23, 625628 (1981).Google Scholar
9. Wada, M., Nakayama, Y., Sawada, A., Tsunekawa, S. and Ishibashi, Y., J. Phys. Soc. Japan 47, 15751580 (1979).Google Scholar
10. Kanamori, H., Hayashi, S. and Ikeda, Y., J. Phys. Soc. Japan 36, 511516 (1974).Google Scholar