Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:11:38.802Z Has data issue: false hasContentIssue false

Dopant Incorporation During Rapid Solidification

Published online by Cambridge University Press:  15 February 2011

C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
D. M. Zehner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
J. Narayan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
O. W. Holland
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
B. R. Appleton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
S. R. Wilson
Affiliation:
Motorola Inc., Phoenix, AZ
Get access

Abstract

Incorporation of Group III, IV, V dopants in silicon occurs as a result of solute trapping during laser annealing. Distribution coefficients and substitutional solubilities are far greater than equilibrium values, and can be functions of growth velocity and crystal orientation. Mechanisms limiting dopant incorporation at high concentrations are identified and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1.Laser-Solid Interactions and Laser Processing-1978, (ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., American Institute of Physics, New York), 1979.Google Scholar
2.Laser and Electron Beam Processing of Materials, (ed. by White, C. W. and Peercy, P. S., Academic Press, New York), 1980.Google Scholar
3.Laser and Electron-Beam Solid Interactions and Materials Processing, (ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. W., North Holland, New York), 1981.Google Scholar
4.Laser and Electron Beam Interactions with Solids, (ed. by Appleton, B. R. and Celler, G. K., North Holland, New York), 1982.Google Scholar
5.Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P. S., Phys. Rev. Lett. 48, 33 (1982).Google Scholar
6.White, C. W., Wilson, S. R., Appleton, B. R. and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
7.Cullis, A. G., Webber, H. C., Poate, J. M. and Simons, A. L., Appl. Phys. Lett. 36, 320 (1980).Google Scholar
8.Baeri, P., Poate, J. M., Campisano, S. U., Foti, G., Rimini, E. and Cullis, A. G., Appl. Phys. Lett. 37, 912 (1981).Google Scholar
9.Baeri, P., Foti, G., Poate, J. M., Campisano, S. U. and Cullis, A. G., Appl. Phys. Lett. 38, 800 (1981).Google Scholar
10.Trumbore, F., Bell Syst. Tech. Jour. 39, 205 (1960).Google Scholar
11.Poate, J. M., Ref. 4, p. 121.Google Scholar
12.Gilmer, G. H., these proceedings.Google Scholar
13.Cahn, J. W., Coriell, S. R. and Boettinger, W. J., Ref. 2, p. 89.Google Scholar
14.White, C. W., Ref. 4, p. 109.Google Scholar
15.Narayan, J., J. Appl. Phys. 52, 1289 (1981).Google Scholar
16.Cullis, A. G., Hurle, D.T.J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P. and Foti, G., Appl. Phys. Lett. 38, 642 (1981).Google Scholar
17.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
18.Narayan, J., J. Appl. Phys., December 1982, in press.Google Scholar
19.Leamy, H. J., Doherty, C. J., Chiu, K.C.R., Poate, J. M., Sheng, T. T. and Celler, G. K., Ref. 2, p. 581.Google Scholar
20.Larson, B. C., White, C. W. and Appleton, B. R., Appl. Phys. Lett. 32, 801 (1978).Google Scholar
21.Appleton, B. R., Narayan, J., Holland, O. W. and Pennycook, S. J., these proceeedings.Google Scholar
22.Narayan, J., Naramoto, H. and White, C. W., J. Appl. Phys. 53, 912 (1982).Google Scholar