Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:04:53.577Z Has data issue: false hasContentIssue false

Dry Hydrogen Plasma Cleaning for Local Epitaxial Growth

Published online by Cambridge University Press:  21 February 2011

Juergen Ramm
Affiliation:
BALZERS Ltd., FL-9496 Balzers, Liechtenstein
Eugen Beck
Affiliation:
BALZERS Ltd., FL-9496 Balzers, Liechtenstein
Ignaz Eisele
Affiliation:
Universität der Bundeswehr München, D–8014 Neubiberg, Germany
Walter Hansch
Affiliation:
Universität der Bundeswehr München, D–8014 Neubiberg, Germany
Bernd-Ulrich Klepser
Affiliation:
Federal Institute of Technology, CH-8092 Zürich, Switzerland
Hans Senn
Affiliation:
Neu–Technikum, CH-9470 Buchs, Switzerland
Get access

Abstract

An argon/hydrogen discharge plasma was created with a UHV compatible plasma source. This low energy plasma was utilized to remove – in a single step – the native oxide and the hydrocarbons from the wafer surface at substrate temperatures between 100°C and 400°C. During the plasma cleaning procedure, residual gas ions were monitored to elucidate the process chemistry. To optimize the procedure, the interfaces between the plasma cleaned wafer and the MBE grown epilayer were investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (XTEM). The cleaning process was also applied to patterned silicon substrates. Subsequent local epitaxial growth by MBE at 550°C without the typical high temperature annealing step was achieved, suggesting that the in–situ dry cleaning procedure caused no surface damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, R.P.H., Chang, C.C., and Darack, S., J.Vac.Sci.Technol. 20(1), 45 (1982)CrossRefGoogle Scholar
2. Suemune, I., Kunitsugu, Y., Tanaka, Y., Kan, Y., and Yamanishi, M., Appl.Phys.Lett. 53, 2173 (1988).CrossRefGoogle Scholar
3. Anthony, B., Breaux, L., Hsu, T., Banerjee, S., and Tasch, A., J.Vac.Sci.Technol. B 7, 621 (1989).Google Scholar
4. Shibata, T., Kondo, N. and Nanishi, Y., J.Electrochem.Soc. 136 (11), 3459 (1989)CrossRefGoogle Scholar
5. Rudder, R.A., Fountain, G.G., and Markunas, R.J., J.Appl.Phys. 60, 3519 (1990).Google Scholar
6. Yew, T.-R., and Reif, R., J.Appl.Phys. 68, 4681 (1990).Google Scholar
7. Thomas, R.E., Mantini, M.J., Rudder, R.A., Malta, D.P., Hattangady, S.V., and Markunas, R.J., J.Vac.Sci.Technol. A10(4), 817 (1992)Google Scholar
8. Yasuda, T., Ma, Y., Habermehl, S., and Lucovsky, G., J.Vac.Sci.Technol. B10(4), 1844 (1992)CrossRefGoogle Scholar
9. Ramm, J., Beck, E., and Zueger, A., Mat.Res.Soc.Symp.Proc., 220, 15 (1991).Google Scholar
10. Ramm, J., Beck, E., Steiner, F.-P., Pixley, R.E., and Eisele, I., Mat.Res.Soc.Symp.Proc., 259, 249 (1992).Google Scholar
11. Ramm, J., Beck, E., ZUger, A., Dommann, A., and Pixley, R.E., Thin Solid Films, 222, 126 (1992).CrossRefGoogle Scholar
12. Ramm, J., Beck, E., Ziger, A., Dommann, A., and Pixley, R.E., Twelfth International Vacuum Congress, 12-16 Oct. 1992, The Hague, Netherlands, accepted for publication in Thin Solid FilmsGoogle Scholar
13. Edlinger, J. and Pulker, H.K., SPIE 1323, 19 (1990).Google Scholar
14. Pearton, S.J., Corbett, J.W., and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer, Berlin etc., 1992)CrossRefGoogle Scholar
15. Kasi, S.R., Liehr, M., Thiry, P.A., Dallaporta, H., and Offenberg, M., Appl.Phys.Lett. 59, 108 (1991).CrossRefGoogle Scholar
16. Hammerl, E., Wittmann, F., Messarosch, J., Eisele, I., Huber, V., Oppolzer, H., Mat.Res.Soc.Symp.Proc., 220, 27 (1991).Google Scholar