Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:46:22.776Z Has data issue: false hasContentIssue false

The DX Center: How Complicated Can a Point Defect Be?

Published online by Cambridge University Press:  26 February 2011

Thomas N. Theis*
Affiliation:
IBM Research, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights,NY 10598
Get access

Abstract

I summarize a large body of experimental and theoretical work, especially in Sidoped GaAs and AlxGal−xAs, which has led to our present understanding of the DX center. There is good evidence that the DX center is just the simple donor, but each donor atom can exist in either of two distinct lattice configurations, each with its own spectrum of bound electronic states. At present the model which appears to best explain this unexpected complexity is that of Chadi and Chang, which predicts a large bond-breaking distortion of the lattice, accompanied by capture of two electrons by the donor. I argue that the best evidence to date for the predicted distortion is provided by observations of alloyperturbations of the DX level. Furthermore, there is now very convincing evidence that the DX level is a two-electron state. I briefly summarize what is known about the bound state spectra of the substitutional and relaxed (DX) configurations, and then discuss the very interesting question of how the donor captures two electrons from the conduction band to theDX level. There is good, although indirect, evidence that an excited one-electron state acts as an intermediate in the thermal emission and capture process. A different excited state appears to 15e involved in photoemission. Although much of this complexity was unforeseen by Chadi and Chang, it nevertheless seems to be consistent with their model. However, I point out a number of issues which still require experimental or theoretical resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bassani, F., ladonisi, G., and Preziosi, B., Rep. Prog. Phys. 37, 1099 (1974).Google Scholar
2. Lang, D.V., Logan, R.A., and Jaros, M., Phys. Rev. B 19, 1015 (1979).CrossRefGoogle Scholar
3. Legros, R., Mooney, P.M., and Wright, S.L., Phys. Rev. B 35, 7505 (1987).CrossRefGoogle Scholar
4. Mooney, P.M., Northrop, G.A., Morgan, T.N., and Grimmeiss, H.G., Phys. Rev.B 37, 8298 (1988).CrossRefGoogle Scholar
5. Watanabe, M.O., Ahizawa, Y., Sugiyama, N., and Nakanisi, T., Inst. Phys. Conf.Ser. 83, 105 (1987).Google Scholar
6. Brunthaler, G., Ploog, K., and Jantsch, W., Phys. Rev. Lett. 63, 2276 (1989).Google Scholar
7. Theis, T.N., Morgan, T.N., Parker, B.D., and Wright, S.L., Materials Science Forum Vols. 38–41, Pt. 3, (Trans Tech Publications, Switzerland, 1989) pp.10731078.Google Scholar
8. Li, M.F., Yu, P.Y., Weber, E.R., and Hansen, W., Phys. Rev. B 36, 4531 (1987).Google Scholar
9. Theis, T.N., Kuech, T.F., Palmateer, L.F., and Mooney, P.M., Inst. Phys. Conf.Ser. 74, 241 (1984).Google Scholar
10. Theis, T.N., Defects in Semiconductors ed. von Bardeleben, H.J. (Switzerland:Trans Tech) pp 393 8 (1986b).Google Scholar
11. Mizuta, M. and Mori, K., Phys. Rev. B 37, 1043 (1988).Google Scholar
12. Theis, T.N., Inst. Phys. Conf. Ser. 95, 307 (1989).Google Scholar
13. Dmochowski, J.E., Langer, J.M., and Jantsch, W., Inst. Phys. Conf. Ser. 95, 325 (1989).Google Scholar
14. Dmochowski, J.E., Langer, J., Raczynska, J., and Jantsch, W., Phys. Rev. B 38,3276 (1988).CrossRefGoogle Scholar
15. Dmochowski, J.E., Dobaczewski, L., Langer, J.M., and Jantsch, W., Phys. Rev. B 40, 9671 (1989).Google Scholar
16. Theis, T.N., Mooney, P.M., and Parker, B.D., J. Ele.c. Mat. 20, 35 (1991).CrossRefGoogle Scholar
17. Mizuta, M., Tachikawa, M., Kukimoto, H., and Minomura, S., Jpn. J. Appl. Phys. 24, L143 (1985).Google Scholar
18. Tachikawa, M., Fujisawa, T., Kukimoto, H., Oomi, G., an Minomura, S., Jpn. J.Appl. Phys. 24, L893 (1985).CrossRefGoogle Scholar
19. Maude, D.K., Portal, J.C., Dmowski, L., Foster, T., Eaves, L., Nathan, M., Heiblum, M., Harris, J.J., and Beall, R.B., Phys. Rev. Lett. 59, 815 (1987).Google Scholar
20. Eaves, L., Foster, T.J., Maude, D.K., Portal, J.C., Murray, R., Newman, R.C., Dmowski, L., Beall, R.B., Harris, J. J., Nathan, M.I., and Heiblum, M., Inst. Phys.Conf. Scr. 95, 315 (1989).Google Scholar
21. Mooney, P.M., Appl. Phys. Reviews, J. Appl. Phys. 67, R1 (1990).Google Scholar
22. Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61, 873 (1988).Google Scholar
23. Chadi, D.J. and Chang, K.J, Phys. Rev. B 39, 10366 (1989).Google Scholar
24. Callaja, E., Mooney, P.M., and Wright, S.L., Appl. Phys. Lett. 56 2102 (1990).CrossRefGoogle Scholar
25. Morgan, T.N., Defects in Semiconductors 15, ed. Firenzi, G., Materials Science Forum vols. 38-41 (Trans Tech Publications, Switzerland, 1989) p. 287.Google Scholar
26. Mooney, P.M., Theis, T.N., and Wright, S.L., Appl. Phys. Lett. 53 2546 (1988).Google Scholar
27. Baba, T., Mizuta, M., Fujizawa, T., Yoshino, J., and Kukimoto, HI., Jpn. J. Appl.Phys. 28 L891 (1989).CrossRefGoogle Scholar
28. Mooney, P.M., Theis, T:N., and Calleja, E., Journal of Electronic Materials 20,23 (1991).Google Scholar
29. Brunthaler, G. and Kbhler, K., Appl. Phys. Lett. 57, 2225 (1990).CrossRefGoogle Scholar
30. Morgan, T.N., J. Elec. Mat. 20, 63 (1991).Google Scholar
31 Mizuta, M. and Kitano, T., Appl. Phys. Lett. 52, 126 (1987).Google Scholar
32 Hayes, T.M., Williamson, D.L., Outzourhit, A., Small, P., Gibart, P., and Rudra, A., J. Elec. Mat. 18, 207 (1989).Google Scholar
33. Khachaturyan, K., Weber, E.R., and Kaminska, M., Defects in Semiconductors 15, ed. Firenzi, G., Materials Science Forum vols. 38–41 (Trans Tech Publications,Switzerland, 1989) p. 1067.Google Scholar
34. Maude, D.K., Eaves, L., and Portal, J.C., Phys. Rev. Lett. 62, 1922 (1989).Google Scholar
35. Chadi, D.J., Chang, K.Y., and Walukiewicz, W., Phys. Rev. Lett. 62, 1923 (1989).Google Scholar
36. O'Reilly, E.P., Appl. Phys. Lett. 55, 1409 (1989).CrossRefGoogle Scholar
37. Dietle, T., Mmowski, L., Kossut, J., Litwin-Straszcwska, E., Piotrzkowski, R., Suski, T., Swiatek, K., and Wilamowski, Z., Acta Physica Polonica A 77, 501 (1990).Google Scholar
38. Mooney, P. M., Wilkening, W, Kaufmann, U., and Kuech, T. F., Phys. Rev. B 39,5554 (1989).CrossRefGoogle Scholar
39. von Bardeleben, H. J., Bourgoin, J. C., Basmaji, P., and Gibart, P., Phys. Rev. B 40, 5892 (1989).Google Scholar
40. Kaufmann, U., Wilkening, W., Mooney, P. M., and Kuech, T. F., Phys. Rev. B 41, 10206 (1990).Google Scholar
41. Khachaturyan, K., Weber, E. R., Crawford, M.G., and Stillman, G. E., J. Elec.Mat. 20 (1991).Google Scholar
42. Khachaturyan, K.A., Awschalom, D.D., Rozen, J.R., and Weber, E.R., Phys. Rev.Lett. 63, 1311 (1989).Google Scholar
43. Katsumoto, S., Matsunaga, N., Yoshida, Y., Sugiyama, K., and Kobayashi, S., Jpn.J. Appl. Phys. 29 L1572 (1990).Google Scholar
44. Fujisawa, T., Yoshino, J., and Kukimoto, H., Japn. J. Appl. Phys. 29, L388(1990).Google Scholar
45. Gibart, P., Williamson, D.L., Moser, J., and Basmaji, P., Phys. Rev. Lett. 65, 1144(1990).Google Scholar
46. Dobaczewski, L. and Kaczor, P., Phys. Rev. Lett. 66, 68 (1991).Google Scholar
47. Mosser, V., Contreras, S., Piotrzkowski, R., Lorenzini, Ph., Robert, J.L., Rochette, J.F. and Marty, A., Proc. 4th Conference on High Pressure in Semiconductor Physics Porto-Carras, Greece August 1990.Google Scholar
48. Wolk, J.A., Kruger, M.B., Heyman, J.N., Walukiewicz, W., Jeanloz, R., and Hailer, E.E., unpublished manuscript.Google Scholar
49. Stillman, G.E., Wolfe, C.M., and Dimmock, J.O., Semiconductors and Semimetals,Vol 12, Infrared Detectors Ii, Eds. Willardson, R.K. and Beer, Albert C. (Academic Press, New York, 1977) p. 169.Google Scholar
50. Theis, T.N., Mooney, P.M., and Wright, S.L., Phys. Rev. Lett. 60, 361 (1988).Google Scholar
51. Glaser, E., Kennedy, T. A., and Molnar, B., Inst. Phys. Conf. Ser. No. 95, 233(1989)Google Scholar
51a. Glaser, E., Kennedy, T. A., Sillmon, R. S., and Spenser, M. G., Phys.Rev. B 40, 3447 (1989).Google Scholar
52. Hjalmarson, H.P., Vogl, P., Wolford, D.J., and Dow, J.D., Phys. Rev. Lett. 44, 810 (1980).Google Scholar
53. Dmochowski, J.E., Wang, P.D., and Stradling, R.A., 20th International Conference on Physics of Semiconductors, Vol. 1, Eds. Anastassakis, E.M. and Joannopoulos, J.D., (World Scientific, Singapore, 1990) p.658.Google Scholar
54. Liu, X., Samuelson, L., Pistol, M.-E., Gerling, M., and Nilsson, S., Phys. Rev. B 41, 11791 (1990).Google Scholar
55. Dabrowski, J., Scheffler, M., and Strehlow, R. in 20th International Conference on Physics of Semiconductors, Vol. 1, Eds. Anastassakis, E.M. and Joannopoulos, J.D., (World Scientific, Singapore, 1990) p.489.Google Scholar
56. Theis, T.N. and Mooney, P.M., Mat. Res. Soc. Symp. Proc. 163, (Materials Research Society, 1990) p. 729 Google Scholar
57. Mooney, P.M., Caswell, N.S., and Wright, S.L., J. Appl. Physics. 62, 4786 (1987).Google Scholar
58. Theis, T.N., Parker, B.D., Solomon, P.M., and Wright, S.L., Appl. Physics Lett. 49, 1542 (1986).Google Scholar
59. Theis, T.N. and Parker, B.D., Appl. Surf. Sci. 30, 52 (1987).Google Scholar