Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:15:22.550Z Has data issue: false hasContentIssue false

The Effect of a Non-Equipartition of Energy on Multi-component Flows

Published online by Cambridge University Press:  11 February 2011

J. E. Galvin
Affiliation:
Department of Chemical Engineering, University of Colorado Boulder, Colorado 80309
S. R. Dahl
Affiliation:
Department of Chemical Engineering, University of Colorado Boulder, Colorado 80309
C. M. Hrenya
Affiliation:
Department of Chemical Engineering, University of Colorado Boulder, Colorado 80309
Get access

Abstract

Rapid granular flows of two species with different material densities are examined via three-dimensional, hard-sphere simulations of simple shear flow. Simulation results are compared with existing theories for binary systems based on the kinetic theory analogy. The comparison between simulation data and theoretical predictions indicate that although non-equipartition is observed and well-predicted by the theory which accounts for its effects, the influence of non-equipartition on stress predictions is fairly small. The influence of non-Maxwellian effects, however, are critical for accurate stress predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Campbell, C. S., Annu. Rev. Fluid Mech. 22, 57 (1990);Google Scholar
Ernst, M. H., in Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, edited by Karkheck, J. (Kluwer Academic Publishers, Dordrecht, 2000), pp. 239.Google Scholar
2 Jenkins, J. T. and Mancini, F., J. Applied Mech. 54, 27 (1987).Google Scholar
3 Jenkins, J. T. and Mancini, F., Phys. Fluids A 1 (12), 2050 (1989);Google Scholar
Huilin, L., Gidaspow, D., and Manger, E., Phys. Rev. E 64, 061301 (2001).Google Scholar
4 Willits, J. T. and Arnarson, B. O., Phys. Fluids 11 (10), 3116 (1999);Google Scholar
Arnarson, B. O. and Jenkins, J. T., in Traffic and Granular Flow ′99: Social, Traffic, and Granular Dynamics, edited by Helging, D., Herrmann, H. J., Schreckenberg, M. et al. (Springer, Berlin, 2000).Google Scholar
5 Goldhirsch, I. and Tan, M-L., Phys. Fluids 8, 1752 (1996);Google Scholar
Esipov, S. E. and Pöschel, T., J. Stat. Phys. 86 (5–6), 1385 (1997);Google Scholar
van Noije, T. P. C. and Ernst, M. H., Granular Matter 1, 57 (1998);Google Scholar
Brey, J. J., Cubero, D., and Ruiz-Montero, M. J., Phys. Rev. E 59 (1), 1256 (1999);Google Scholar
Losert, W., Cooper, D. G. W., Delour, J. et al., Chaos 9 (3), 682 (1999);Google Scholar
Kudrolli, A. and Henry, J., Phys. Rev. E 62 (2), 1489 (2000).Google Scholar
6 Garzó, V. and Dufty, J., Phys. Rev. E 60 (5), 5706 (1999);Google Scholar
Barrat, A. and Trizac, E., Gran. Matter 4 (2), 57 (2002);Google Scholar
Feitosa, K. and Menon, N., Phys. Rev. Lett. 88 (19), 198301 (2002);Google Scholar
Wildman, R. D. and Parker, D. J., Phys. Rev. Lett. 88 (6), 064301 (2002);Google Scholar
Clelland, R. and Hrenya, C. M., Phys. Rev. E 65, 031301 (2002);Google Scholar
Dahl, S. R., Hrenya, C. M., Garzó, V. et al., Phys. Rev. E 66, art. no. 041301 (2002).Google Scholar
7 Lees, A. W. and Edwards, S. F., J. Phys. C: Solid State Phys. 5, 1921 (1972).Google Scholar
8 Galvin, J. E., Dahl, S. R., and Hrenya, C. M., under review (2003).Google Scholar
9 Arnarson, B. O. and Willits, J. T., Phys. Fluids 10, 1324 (1998).Google Scholar