Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:44:59.839Z Has data issue: false hasContentIssue false

Effect of Ion-implantation on Forming and Resistive Switching Response of NiO Thin-Films

Published online by Cambridge University Press:  01 February 2011

Robert Elliman
Affiliation:
rob.elliman@anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Muhammad Saleh
Affiliation:
mns109@rsphysse.anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Sung Kim
Affiliation:
Sung.Kim@anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Dinesh Venkatachalam
Affiliation:
dkv109@physics.anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Taehyun Kim
Affiliation:
thk109@rsphysse.anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Kidane Belay
Affiliation:
kidane.belay@anu.edu.au, The Australian National University, Electronic Materials Engineering, Canberra, Australian Capital Territory, Australia
Get access

Abstract

The forming voltage and set/reset response of sputter-deposited NiO thin films is studied as a function of implant fluence for samples implanted with Ni and O ions. The forming voltage of the films is shown to decrease with increasing ion fluence and to scale with the damage production rate of the different ions. In contrast, the set/reset response of the films was largely unaffected by the ion-implantation. These results are discussed in terms of the filamentary model of conduction and the thermochemical model of resistive switching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dearnaley, G., Stoneham, A.M., and Morgan, D.V., Rep. Prog. Phys. 33, 1129 (1970).Google Scholar
2 Gibbons, J.F., and Beadle, W.E., Solid Solid-State Electron. 7, 785 (1964).Google Scholar
3 Hickmott, T.W., J. Appl. Phys. 33, 2669 (1962).Google Scholar
4 Waser, R., Microelectron. Eng. 86, 1925 (2009).10.1016/j.mee.2009.03.132Google Scholar
5 Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., Nature 453, 80 (2008).Google Scholar
6 Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M., and Hwang, C.S., Nat. Nanotechnol. 5, 148 (2010).Google Scholar
7 Kugeler, C., Weng, R., Schroeder, H., Symanczyk, R., Majewski, P., Ufert, K.D., Waser, R., and Kund, M., Thin Solid Films 518, 2258 (2010).10.1016/j.tsf.2009.10.040Google Scholar
8 Demolliens, A., Muller, C., Deleruyelle, D., Spiga, S., Cianci, E., Fanciulli, M., Nardi, F., Cagli, C., and Ielmini, D., Reliability of NiO NiO-based resistive switching memory (ReRAM) elements with pillar bottom electrode (Proceedings of the IEEE International Memoryy Workshop Workshop, Monterey, CA, 2009) pp. 2527.Google Scholar
9 Tsunoda, K., Kinoshita, K., Noshiro, H., Yarnazaki, Y., Lizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., and Sugiyama, Y., Low power and high speed switching of Ti Ti-doped NiOReRAM under the u unipolar voltage source of less than 3 V nipolar V, (Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, 2007) pp. 767770.Google Scholar
10 Russo, U., Ielmini, D., Cagli, C., and Lacaita, A.L., IEEE Trans. Electron Devices 56, 193 (2009).10.1109/TED.2008.2010584Google Scholar
11 Russo, U., Ielmini, D., Cagli, C., and Lacaita, A.L., IEEE Trans. Electron Devices 56, 186 (2009).10.1109/TED.2008.2010583Google Scholar
12 Cagli, C., Nardi, F., and Ielmini, D., IEEE Trans. Electron Devices 56, 1712 (2009).Google Scholar
13 Lee, M.J., Park, Y., Ahn, S.E., Kang, B.S., Lee, C.B., Kim, K.H., Xianyu, W.X., Yoo, I.K., Lee, J.H., Chung, S.J., Kim, Y.H., Lee, C.S., Choi, K.N., and Chung, K.S., J. Appl. Phys. 103, 4 (2008).Google Scholar
14 Jung, K., Choi, J., Kim, Y., Im, H., Seo, S., Jung, R., Kim, D., Kim, J.S., Park, B.H., and Hong, J.P., J. Appl. Phys. 103, 4 (2008).Google Scholar