Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T09:03:13.657Z Has data issue: false hasContentIssue false

The Effect of Ion-Implanted Elements on the θ to α Phase Transformation of Al2O3 Scales Grown on β-NiAl

Published online by Cambridge University Press:  01 January 1992

B. A. Pint
Affiliation:
H. H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
A. Jain
Affiliation:
ITMMEC, Indian Institute of Technology, Delhi 110016, India
L. W. Hobbs
Affiliation:
H. H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

During oxidation at 1000°C in dry, flowing O2, β-NiAl first forms an oxide scale of primarily θ-Al2O3. After 1-4 hr of continued exposure this metastable oxide transforms into the stable α-Al2O3 structure. An implant of 2 × 1016Y/ cm2 at 70kV was found to stabilize the first- forming θ- Al203 scale up to 100hr at 1000°C. β-NiAl was also implanted with Al and Cr to study the effect of the implantation damage and of another more noble element on the oxidation behavior. At 1200°C, only a short term effect of the Y-implant was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pint, B. A., Jain, A. and Hobbs, L. W., in High-Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A. et al. , MRS Symp. Proc. 213, 981 (1991).Google Scholar
2. Pint, B. A. and Hobbs, L. W., Electrochem. Soc. Extended Abstracts 91–2, 915 (1991).Google Scholar
3. Pint, B. A., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1992.Google Scholar
4. Bennett, M. J., in Environmental Degredation of Ion and Laser Beam Treated Surfaces, edited by Was, G. S. and Grabowski, K. S. (TMS, Materials Park, OH, 1989), p.261.Google Scholar
5. Jedlinski, J. and Mrowec, S., Mat. Sci. and Eng. 87, 281 (1987).Google Scholar
6. Mrowec, S., Gil, A. and Jedlinski, J., Werk. Korr. 38, 563 (1987).Google Scholar
7. Pint, B. A. and Hobbs, L. W., submitted to the Spring 1993 meeting of the Electrochemical Society.Google Scholar
8. Bye, G. C. and Simpken, G. T., J. Amer. Cer. Soc. 57, 367 (1974).Google Scholar
9. Hagel, W. C., Corrosion 21, 316 (1965).Google Scholar
10. Rybicki, G. C. and Smialek, J. L., Oxid. Met. 31, 275 (1989).Google Scholar
11. Doychak, J., Smialek, J. L. and Mitchell, T. E., Met. Trans. 20A, 499 (1989).Google Scholar
12. Jedlinski, J., Borchardt, G. and Mrowec, S., Werk. Korr. 41, 701 (1990).Google Scholar
13. Wynnyckyj, J. R. and Morris, C. G., Met. Trans. 16B, 345 (1985).Google Scholar
14. Pint, B. A., Martin, J. R. and Hobbs, L. W., submitted to Oxid. Met..Google Scholar
15. Cawley, J. D. and Halloran, J. W., J. Am. Cer. Soc. 69, C195 (1986).Google Scholar
16. Schaper, H., Doesburg, E. B. M. and Van Reijen, L. L., App. Catal. 7, 211 (1983).Google Scholar
17. Burtin, P., Brunelle, J. P. and Soustelle, M., App. Catal. 34, 225 (1987).Google Scholar
18. Ozawa, M., Kimura, M. and Isogai, A., J. Mat. Sci. Letter 9, 709 (1990).Google Scholar
19. van Manen, P. A., Young, E. W. A., Schalkoord, D., van der Wekken, C. J. and de Wit, J. H. W., Surf. Inter. Anal. 12, 391 (1987).Google Scholar