Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T05:35:50.350Z Has data issue: false hasContentIssue false

Effect of partial filling of the structural vacant sites on the thermoelectric properties of Zr0.25Hf0.75NiSn half-Heusler alloy

Published online by Cambridge University Press:  01 February 2011

Julien Pierre Amelie Makongo Mangan
Affiliation:
jmakongo@uno.edu, University of New Orleans, Advanced Materials Research Institute, New Orleans, Louisiana, United States
Dinesh Misra
Affiliation:
dmisra@uno.edudakkmisra@gmail.com, University of New Orleans, Advanced Materials Research Institute, New Orleans, Louisiana, United States
Nathan J. Takas
Affiliation:
ntakas@uno.edu, University of New Orleans, Advanced Materials Research Institute, New Orleans, Louisiana, United States
Kevin L. Stokes
Affiliation:
klstokes@uno.edu, University of New Orleans, Departement of Physics and the Advanced Materials Research Institute, New Orleans, Louisiana, United States
Heike Gabrisch
Affiliation:
hgabrisc@uno.edu, University of New Orleans, Department of Chemistry and the Advanced Materials Research Institute, New Orleans, Louisiana, United States
Pierre F. P. Poudeu
Affiliation:
ppoudeup@uno.edu, University of New Orleans, Department of Chemistry and the Advanced Materials Research Institute, New Orleans, Louisiana, United States
Get access

Abstract

Composites containing mainly-half-Heusler MNiSn (HH) and full-Heusler MNi2Sn (FH) were prepared by solid state reaction of a mixture of polycrystalline bulk HH alloy with various concentrations of Ni up to 10 wt.%. Electrical conductivities, thermal conductivities and thermopowers of spark plasma sintered specimens of the as synthesized composite materials were measured in the temperature range from 300 K to 750 K. The conduction type of the composite changes from semiconductor to semimetal for Ni concentrations up to 2 wt.% and from semimetal to metal for higher Ni concentrations above 5 wt.%. A strong reduction in lattice thermal conductivity was observed for the composite containing 10 wt. % Ni inclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aliev, F. G. Brandt, N. B. Moshchalkov, V. V. Scolozdra, R. V. Belogorokhov, A. I. Z. Phys. B 75 167 (1989).10.1007/BF01307996Google Scholar
[2] Aliev, F. G. Kozyrkov, V. V. Moshchalkov, V. V. Scolozdra, R. V. Durczewski, K. Z. Phys. B 80 353 (1990).Google Scholar
[3] Poon, S. J. in semiconductors and Semimetals, Vol. 70, edited by Tritt, T. M. (Academic, San Diego, 2000), p.37.Google Scholar
[4] Simonson, J. W. Poon, S. J. J. Phys.: Condens. Matter 20, 255220 (2008).Google Scholar
[5] Shen, Q. Chen, L. Goto, T. Hirai, T. Yang, J. Meisner, G. P. Uher, C. Appl. Phys. Lett. 79, 4165 (2001).10.1063/1.1425459Google Scholar
[6] Hohl, H. Ramirez, A. P. Goldmann, C. Ernst, G..Wölfing, B., Bucher, E. J. Phys.: Condens. Matter 11, 1697 (1999).Google Scholar
[7] Romaka, V. A. Shelyapina, M. G. Frushart, D. Gorelenko, YU. K. Stadnyk, YU. V. Romaka, L. P. Chekurin, V. F. Horin, A. M. Ukr. J. Phys., 52 39 (2007).Google Scholar
[8] Goldsmid, H. J. Douglas, R. W. Brit. J. Appl. Phys. 5, 386 (1954).10.1088/0508-3443/5/11/303Google Scholar
[9] Sootsman, J. R. Pcionek, R. J. Kong, H. Uher, C. Kanatzidis, M. G. Chem. Mater. 18 4993 (2006).10.1021/cm0612090Google Scholar
[10] Yamashita, O. Sadatomi, N. J. Appl. Phys. 88, 245 (2000).10.1063/1.373648Google Scholar
[11] Kim, W. Majumdar, A. J. Appl. Phys. 99, 084306 (2006).10.1063/1.2188251Google Scholar
[12] Morimura, T. Hasaka, M. Yoshimoto, M. J. Alloys Compd. 416 155 (2006).10.1016/j.jallcom.2005.08.043Google Scholar