Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:59:26.411Z Has data issue: false hasContentIssue false

Effect of Preparation and Impurities on The Size and Shape of The Crystallites and on The Crystal Symmetry of Superionic PbSnF4

Published online by Cambridge University Press:  15 February 2011

Georges Dénès
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montréal, Québec, Canada, gdenes@vax2.concordia.ca
M. Cecilia Madamba
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montréal, Québec, Canada, gdenes@vax2.concordia.ca
Get access

Abstract

The highest performance fluoride ion conductor, PbSnF4, has been applied for the fabrication of an ambient temperature amperometric oxygen sensor, where it is used in the polycrystalline form. However, the structure of this material is highly anisotropic, thus one could expect polycrystalline samples to give a performance strongly dependent on crystallite direction. We have shown that the tin electronic structure has a very strong influence on the local structure, which determines the preferred direction of crystal growth, which is itself responsible for the crystal shape. This, in turn, determines the direction of preferred orientation, which can dramatically alter the properties relative to a randomly oriented sample. The effect of minor impurities on the size of the crystallites and on the crystalline symmetry has been studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wakagi, A. and Kuwano, J., J. Mater. Chem. 41, 973 (1994).Google Scholar
2. Wakagi, A., Kuwano, J., Kato, M. and Hanamoto, H., Solid State Ionics 70/71, 601 (1994).Google Scholar
3. Dénès, G., Milova, G., Madamba, M. C. and Perfiliev, M., Solid State Ionics 86–88, 77 (1996).Google Scholar
4. Milova, G., Dénès, G., Madamba, M. C. and Perfiliev, M., in Electrically based Microstructural Characterization, edited by Gerhardt, R. A., Taylor, S. R. and Garboczi, E. J. (Mater. Res. Soc. Proc. 411, Pittsburgh, PA 1996), p. 151156.Google Scholar
5. Dénès, G., in Solid State Ionics IV, edited by Nazri, G. A., Tarascon, J. M. and Schrieber, M. (Mater. Res. Soc. Proc. 369, Pittsburgh, PA 1995), 295300 (1995).Google Scholar
6. Ito, Y., Mukuyama, T., Funatomi, H., Yoshikado, S. and Tanaka, T., Solid State Ionics 67, 301 (1995)Google Scholar
7. Kanno, R., Ohno, K., Izumi, H., Kawamoto, Y., Kamiyama, T., Asano, H. and Izomi, F., Solid State Ionics 70/71, 253 (1994).Google Scholar
8. Birchall, T., Dénès, G., Ruebenbauer, K. and Pannetier, J., Hyperf. Interact. 29, 1331 (1986).Google Scholar
9. Dénès, G., Yu, Y. H., Tyliszczak, T. and Hitchcock, A. P, J. Solid State Chem. 91, p. 1 (1991).Google Scholar
10. Dénès, G., Madamba, M.C., Muntasar, A., Peroutka, A., Tam, K. and Zhu, Z., Mbssbauer Spectroscopy in Materials Science, Miglierini, M. and Petridis, D. (eds.), NATO Science Series, 3. High Technology, Vol. 66, Kluwer Academic Publishers, Dordretch (Netherlands), 2538 (1999).Google Scholar
11. Calandrino, R., Collin, A., Dénès, G., Madamba, M. C. and Parris, J. M. in Solid State Chemistry of Inorganic Materials, edited by Davies, P. K., Jacobson, A. J., Torardi, C. C. and Vanderah, T. A. (Mater. Res. Soc. Proc. 453, Pittsburgh, PA 1997), p. 585590.Google Scholar
12. Dénès, G., Pannetier, J. and Lucas, J., Acad, C. R.. Sc. Paris, C 280, 831 (1975).Google Scholar
13. Warren, B.E., X-ray Diffraction, 2nd edition, Dover Publications, New York (1990), pp. 251314.Google Scholar
14. Dénès, G., Madamba, M. C. and Parris, J. M. in Solid State Ionics IV, edited by Nazri, G. A., Tarascon, J. M. and Schrieber, M. (Mater. Res. Soc. Proc. 369, Pittsburgh, PA 1995), p. 463468.Google Scholar
15. Dénès, G. and Madamba, M. C., Materials Structure 3, 227 (1996).Google Scholar
16. Collin, A., Dénès, G., Le Roux, D., Madamba, M.C., Parris, J. M. and Salafin, A., Intern. J. Inor. Mater. 1, 289301 (1999).Google Scholar
17. Pannetier, J., Dénès, G. and Lucas, J., Mat. Res. Bull. 14, p. 626 (1979).Google Scholar
18. Dénès, G., J. Solid State Chem. 15, 807 (1980).Google Scholar
19. Worlton, T.G. and Beyerlein, R.A., Phys. Rev. B 12, 1899 (1975).Google Scholar
20. Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA 1959), pp. 96-103, 261-263, 263-269, 444453.Google Scholar