Published online by Cambridge University Press: 01 February 2011
The effect of infrared absorption on SiC sublimation growth was numerically investigated. At first, absorption coefficient was estimated as function of doping concentration. Then temperature distribution inside a crucible was numerically analyzed with taking account of absorption in growing crystal. It was pointed out that temperature distribution in a growing crystal strongly depends on absorption coefficient, i.e. doping concentration. As increasing the absorption coefficient, the growth front temperature and temperature gradient inside a growing crystal increase. It might cause large thermal stress and affect the grown crystal quality. This agrees well with growth features in experiment. The growth condition should be determined with taking account of absorption coefficient, i.e. doping concentration.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.