Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T08:22:47.848Z Has data issue: false hasContentIssue false

Effect of severe plastic deformation on an extruded ZK60 magnesium alloy

Published online by Cambridge University Press:  07 July 2016

Florina D. Dumitru
Affiliation:
National Institute for Research and Development in Environmental Protection, 294 Splaiul Independentei, 060031, Bucharest, Romania.
György Deák
Affiliation:
National Institute for Research and Development in Environmental Protection, 294 Splaiul Independentei, 060031, Bucharest, Romania.
Oscar F. Higuera-Cobos
Affiliation:
Facultad de Ingeniería, Ingeniería Mecánica, Universidad del Atlántico, Barranquilla, Colombia.
José M. Cabrera-Marrero
Affiliation:
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universidad Politécnica de Cataluña, Av. Diagonal 647, 08028 – Barcelona, España. Fundación CTM Centre Tecnológic, Plaça de la Ciència 2, 08243, Manresa, España.
Get access

Abstract

Equal channel angular pressing (ECAP) was carried out on extruded ZK60 magnesium alloy until an equivalent strain of ∼4 (corresponding to 4 passes) at 523K following route Bc. The effect of the deformation on both microstructure and texture was investigated by analysis of inverse pole figures and pole figures respectively, determined by EBSD. Additionaly, the mechanical properties were evaluated through tensile tests. The ECAPed processed ZK60 alloy showed the presence of dynamic recrystallization (DRX) process, correlated with a strong basal fiber texture. The presence of pyramidal slip was also observed, which can be correlated with the presence on twin-oriented boundaries in the material. Both the grain size reduction and the existence of texture influenced the ductility of the magnesium alloy processed by ECAP, as the ductility of the ZK60 alloy after four ECAP passes increased two times in comparation with the initial (un-processed) material.

Type
Articles
Copyright
Copyright © Materials Research Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Figueiredo, R.B. and Langdon, T. G., Journal of Materials Research and Technology 1, 5562 (2012).CrossRefGoogle Scholar
Higuera, O.F. and Cabrera, J. M., Materials Science and Engineering A 571, 103114 (2013).CrossRefGoogle Scholar
Maleki-Ghaleh, H., Hajizadeh, K., Hadjizadeh, A., Shakeri, M.S., Ghobadi-Alamdari, S., Masoudfar, S., Aghaie, E., Javidi, M., Zdunek, J. and Kurzydlowski, K. J., Materials Science and Engineering: C 39, 299304(2014).CrossRefGoogle Scholar
Muñoz-Bolaños, J.A., Higuera-Cobos, O.F. and Cabrera, J. M., in NANOSPD6-Nanomaterials by Severe Plastic Deformation, edited by Toth, L. S., (IOP Conf. Series: Materials Science and Engineering, 63, Metz, 2014).Google Scholar
Kainer, K. U. and Buch, F. V., “The Current State of Technology and Potential for Further Development of Magnesium Applications”, Magnesium Alloys and Technology, ed Kainer, K. U., (Wiley-VCH, 2003).CrossRefGoogle Scholar
Chino, Y. and Mabuchi, M., Scr. Mater. 60, 447450 (2009).CrossRefGoogle Scholar
Agnew, S.R., Mehrotra, P., Lillo, T.M., Stoica, G.M. and Liaw, P. K., Acta Materialia 53, 31353146 (2005).CrossRefGoogle Scholar
Gu, C.F., Tóth, L.S., Field, D.P., Fundenberger, J.J. and Zhang, Y.D., Acta Materialia 61, 30273036 (2013).CrossRefGoogle Scholar
Balogh, L., Figueiredo, R.B., Ungár, T. and Langdon, T.G., Materials Science and Engineering A 528, 533538 (2010).CrossRefGoogle Scholar
Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Materialia 45, 47334741(1997).CrossRefGoogle Scholar
Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Materials Science and Engineering A 257, 328332 (1998).CrossRefGoogle Scholar
Cabrera, J.M., Omar, A.A. and Prado, J. M., J. Mater. Sci. 31, 13031309 (1996).CrossRefGoogle Scholar
Dumitru, F.-D., Higuera-Cobos, O.F. and Cabrera, J. M., Materials Science and Engineering A 594, 3239 (2014).CrossRefGoogle Scholar
Tan, J.C. and Tan, M. J., Scripta Mater. 47, 101106 (2002).CrossRefGoogle Scholar
He, Y., Pan, Q., Qin, Y., Liu, X., Li, W., Chiu, Y. and Chen, J.J.J., Journal of Alloys and Compounds 492, 605610 (2010).CrossRefGoogle Scholar
Gazder, A.A., Cao, W., Davies, C.H.J. and Pereloma, E. V., Materials Science and Engineering A 497, 341352 (2008).CrossRefGoogle Scholar
Lin, J.B., Wang, Q.D., Chen, Y.J., Liu, M.P. and Roven, H. J., Trans. Nonferrous Met. Soc. China 20, 20812085 (2010).CrossRefGoogle Scholar
Beausir, B., Suwas, S., Tóth, L.S., Neale, K.W. and Fundenberger, J.-J., Acta Materialia 56, 200214 (2008).CrossRefGoogle Scholar
Galiyev, A., Kaibyshev, R. and Gottstein, G., Acta Materialia 49, 11991207 (2001).CrossRefGoogle Scholar
Mukai, T., Yamanoi, M., Watanabe, H. and Higashi, K., Scripta Materialia 45, 8994 (2001)CrossRefGoogle Scholar