Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:58:15.238Z Has data issue: false hasContentIssue false

The Effect of The Initial Nucleation Temperature on The Misfit Dislocation Structure of InP-on-GaAs Heterostructures

Published online by Cambridge University Press:  25 February 2011

Ferenc Riesz
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, P. O. Box 76, H-1325 Budapest, Hungary
G. Radnoczi
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, P. O. Box 76, H-1325 Budapest, Hungary
B. Pecz
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, P. O. Box 76, H-1325 Budapest, Hungary
K. Rakennus
Affiliation:
Department of Physics, Tampere University of Technology, P. O. Box 692, SF-331Ø1 Tampere, Finland
T. Hakkarainen
Affiliation:
Department of Physics, Tampere University of Technology, P. O. Box 692, SF-331Ø1 Tampere, Finland
A. Pesek
Affiliation:
Institut für Experimentalphysik, Universität Linz, A-4Ø4Ø Linz, Austria
K. Lischka
Affiliation:
Forschungsinstitut für Optoelektronik, Universität Linz, A-4Ø4Ø Linz, Austria
Get access

Abstract

The misfit dislocation structure of vicinal InP-on-GaAs heterostructures is studied by transmission electron microscopy (TEM). An island type growth is identified. The misfit stress is not fully relaxed at the interface. X-ray measurements on strain relaxation and epilayer misorientation are also reported, and the latter results are explained with the asymmetric introduction of 6Ø° dislocations at island edges. Comparing the results, it is concluded that x-ray data supply additional, although indirect, information on initial growth which is hardly detectable by TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Demeester, P., Ackaert, A., Coudenys, G., Moerman, I., Buydens, L., Pollentier, I. and Daele, P. Van, Prog. Cryst. Growth Charact. Mater. 22, 53 (1991); E. A. Fitzgerald, Mater. Sci. Rep. 1, 87 (1991).Google Scholar
2. Nagai, H., J. Appl. Phys. 45, 3789 (1974).Google Scholar
3. Pesek, A., Hingerl, K., Riesz, F. and Lischka, K., Semicond. Sci. Technol. 6, 705 (1991).Google Scholar
4. Ayers, J. E., Ghandhi, S. K. and Schowalter, L. J., J. Cryst. Growth 113, 430 (1991).Google Scholar
5. Riesz, F., Lischka, K., Rakennus, K., Hakkarainen, T. and Pesek, A, J. Cryst. Growth 114, 127 (1991).Google Scholar
6. Rakennus, K., Hakkarainen, T., Tappura, K. and Pessa, M., Proc. 6th European Conference on MBE and Related Growth Methods, 21-24 April, 1991, Tampere, Finland, Paper Fo4.Google Scholar
7. Barna, A. and Pècz, B., J. Electron Microsc. Techn. 18, 325 (1991).Google Scholar
8. Zhu, J. G. and Carter, C. B., Philos. Mag. A 62, 319 (1990).Google Scholar
9. Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C. and Otsuka, N., J. Appl. Phys. 68, R31 (1990).Google Scholar
10. Olego, D. J., Okuno, Y., Kawano, T. and Tamura, M., J. Appl. Phys. 12, 4502 (1992).Google Scholar
11. S. Chu, N. G., Tsang, W. T., Chiu, T. H. and Macrander, A. T., J. Appl. Phys. 66, 520 (1989).Google Scholar