Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T06:12:22.876Z Has data issue: false hasContentIssue false

Effective energy landscapes for mobile ions in solid electrolytes

Published online by Cambridge University Press:  01 February 2011

Stefan Adams*
Affiliation:
GZG, Kristallographie, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
Get access

Abstract

Bond valence mismatch landscapes may serve as simple models of the effective energy landscapes for mobile ions in solid electrolytes. Thereby they provide a tool to identify the ion transport mechanism and allow to predict the activation energy of the ionic conduction. Accounting for the mass dependence of the conversion from the BV mismatch into an activation energy scale yields a correlation that holds for different types of mobile cations. While in most cases the analysis of bond valence mismatch landscapes is consistent with the ion transport mechanism derived from experimental or other computational evidence, the presumed prototype of trivalent cation conductors Sc2(WO4)3 is discussed as an example, where the BV analysis of transport pathways suggests that the interpretation of previous experimental investigations has to be reconsidered. Both bond valence calculations and molecular dynamics simulations suggests that the most probable mobile species in stoichiometric Sc2(WO4)3 is neither Sc3+ nor individual O2- but the complex divalent anion WO42-.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, I.D., The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, IUCr Monographs on Crystallography 12 (Oxford University Press, 2002).Google Scholar
2. Adams, S.; Acta Crystallogr. B 57, 278 (2001).Google Scholar
3. Adams, S., softBV web pages; http://kristall.uni-mki.gwdg.de/softBV/, Göttingen (2003).Google Scholar
4. Adams, S. and Swenson, J., Ionics 10, in the press. Google Scholar
5. Adams, S., Moretzki, O. and Canadell, E., Solid State Ionics 168, 281 (2004).Google Scholar
6. Adams, S., habilitation thesis, Göttingen (2000);Google Scholar
Adams, S. and Swenson, J., Solid State Ionics 154/155, 151 (2002).Google Scholar
7. Adams, S., Swenson, J., Solid State Ionics 175, 665 (2004).Google Scholar
8. Thangadurai, V., Adams, S. and Weppner, W., Chem. Mater. 16, 2998 (2004).Google Scholar
9. Cabana, J., Ling, C.D., Oró-Solé, J., Gautier, D., Tobías, G., Adams, S., Canadell, E. and Palacín, M.R., Inorg. Chem. 43, 7050 (2004).Google Scholar
10. Adams, S. and Swenson, J., Phys. Rev. Lett. 84, 4144 (2000); Phys. Rev. B 63, 054201 (2000).Google Scholar
11. Preusser, A., thesis, Göttingen (2002).Google Scholar
12. Adams, S. and Preusser, A., Acta Crystallogr. C55, 1741 (1999).Google Scholar
13. Inorganic Crystal Structure Database ICSD, FIZ Karlsruhe, Germany, 1997.Google Scholar
14. Adams, S. and Maier, J., Solid State Ionics 105, 67 (1998).Google Scholar
15. Imanaka, N., Kobayashi, Y., Adachi, G., Chem. Lett. 1995, 433;Google Scholar
Imanaka, N., Kobayashi, Y., Fujiwara, K., Asano, T., Okazaki, Y. and Adachi, G., Chem. Mater. 10, 2006 (1998).Google Scholar
16. Köhler, J., Imanaka, N., Adachi, G., Chem. Mater. 10, 3790 (1998); 9, 1357–1362 (1997).Google Scholar
17. Secco, R.A., Liu, H., Imanaka, N., Adachi, G. and Rutter, M.D., J. Phys. Chem. Solids 63, 425 (2002).Google Scholar
18. Köhler, J., Imanaka, N., Urland, W., Adachi, G., Angew. Chem. Int. Ed. 39, 905 (2000).Google Scholar
19. Driscoll, D.J., Islam, M.S., Slater, P.R., Solid State Ionics 2004, in the press.Google Scholar
20. Evans, J.S.O., Mary, T.A. and Sleight, A.W., J. Solid State Chem. 137, 148 (1998).Google Scholar