Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T07:32:55.039Z Has data issue: false hasContentIssue false

Effects of Cation Substitution on the Thermoelectric Properties in Ca-Co-O

Published online by Cambridge University Press:  21 March 2011

Ichiro Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, JAPAN
Ryoji Funahashi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, JAPAN
Masahiro Shikano
Affiliation:
National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, JAPAN
Kei Sasaki
Affiliation:
Osaka Electro-Communication University, Neyagawa, Osaka572-8530, JAPAN
Hiroyuki Enomoto
Affiliation:
Osaka Electro-Communication University, Neyagawa, Osaka572-8530, JAPAN
Get access

Abstract

We have prepared (Ca1−x−yMxBiy)3Co4Oz (M = Mg, Sr, and Ba) thin films by a combinatorial approach using a solution process. In the systems of (Ca1−x−yMxBiy)3Co4Oz (M = Mg, Sr, and Ba), solid solution range was determined to be × < 0.8 (M = Sr, y = 0), x < 1.0 (M = Mg, y = 0), x = 0.0 (M = Ba, y = 0), and x < 0.4 (M = Bi, x = 0). No solid solution range was obtained for the substitution of Ba for Ca site. The in-plane compressive stress in the CoO2 sublattice is controllable by the cation substitution for Ca in the (Ca2CoO3) sublattice. With increasing in-plane stress, the magnitude of thermoelectric power and resistivity increased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., and Uchinokura, K., Phys. Rev. B56, 12685 (1997).Google Scholar
2. Yakabe, H., Kikuchi, K., Terasaki, I., Sasago, Y., and Uchinokura, K., Proc. 16th Int. Conf. on Thermoelectrics, 523 (1997).Google Scholar
3. Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H., J. Mater. Chem. 9, 1659 (1999).Google Scholar
4. Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H., Chem. Mater. 12, 2424 (2000).Google Scholar
5. Funahashi, R., Matsubara, I., Sodeoka, S., Ikuta, H., Takeuchi, T., and Mizutani, U., Jpn. J. Appl. Phys. 39, L1127 (2000).Google Scholar
6. Miyazaki, Y., Kudo, K., Akoshima, M., Ono, Y., Koike, Y., and Kajitani, T., Jpn. J. Appl. Phys. 39, L531 (2000).Google Scholar
7. Masset, A., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B., Phys. Rev. B 62, 166 (2000).Google Scholar
8. Moon, J. W., Nagahama, D., Masuda, Y., Seo, W. S., and Koumoto, K., J. Ceram. Soc. Jpn, 109, 647 (2001)Google Scholar
9. Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., and Weinberg, W. H., Angew. Chem. Int. Ed., 38, 2495 (1999).Google Scholar
10. Lambert, S., Leligny, H., and Grebille, D., J. Solid State Chem. 160, 322 (2001).Google Scholar
11. Huber, H. and Wagener, S., Z. Tech. Physik 23, 1 (1942).Google Scholar
12. Greenwald, S., Acta Cryst. 6, 396 (1953).Google Scholar
13. Fujita, K., Mochida, T., Nakamura, K., Jpn. J. Appl. Phys. 40, 4644 (2001).Google Scholar
14. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., and Mizutani, U., Mater. Trans. 42, 956 (2001).Google Scholar
15. Mandal, J. B., Das, A. N., and Ghosh, B., J. Phys. Condens. Matter. 8, 3047 (1996).Google Scholar