Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T06:29:58.647Z Has data issue: false hasContentIssue false

Effects of chemical composition on the structural relaxation in ternary Zr-Cu-Al bulk glassy alloys studied by EXAFS and positron annihilation techniques.

Published online by Cambridge University Press:  10 March 2011

A Ishii
Affiliation:
Department of Materials Science, Osaka Pref. Univ., 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
S Mineno
Affiliation:
Department of Materials Science, Osaka Pref. Univ., 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
A Iwase
Affiliation:
Department of Materials Science, Osaka Pref. Univ., 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
Y Yokoyama
Affiliation:
Institute for Materials Research, Tohoku Univ., 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
T J. Konno
Affiliation:
Institute for Materials Research, Tohoku Univ., 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
F Hori
Affiliation:
Department of Materials Science, Osaka Pref. Univ., 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
Get access

Abstract

Mechanical properties and thermal stability of bulk glassy alloys depend on their chemical composition ratios, although their detailed local structures especially around free volume have not been clarified yet. In order to know the origin of property dependence on alloy composition in Zr-Cu-Al ternary bulk glassy alloys in a view point of atomic scale, positron annihilation lifetime, coincidence Doppler broadening (CDB) and EXAFS (extended X-ray absorption fine structure) measurements have been employed for eutectic Zr50Cu40Al10 and hypoeutectic Zr60Cu30Al10 bulk glassy alloys before and after structural relaxation by annealing below glass transition temperature Tg.

The result of CDB experiment, which represents the electron momentum distribution around free volume, shows that significant atomic reordering around free volume does not take place by the annealing in each alloy. Besides, CDB ratio profiles for each alloy suggest that the fraction of Zr atom around free volume does not match the chemical composition of each alloy system. Change in positron lifetime, which is proportional to the size of free volume, during annealing for hypoeutectic alloy almost remains unchanged.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suh, D. and Dauskardt, R. H., J. Non-Cryst. Solids 317, 181 (2003).Google Scholar
2. Yamasaki, T., Maeda, S., Fukami, T., Yokoyama, Y., Kimura, H. M. and Inoue, A., Mater. Trans., 48, 1834 (2007).Google Scholar
3. Yokoyama, Y., Yamasaki, T., Liaw, P. K., Inoue, A., Acta Mater. 56, 6097 (2008).Google Scholar
4. Ishii, A., Hori, F., Iwase, A., Fukumoto, Y., Yokoyama, Y. and Konno, T. J., Mater. Trans., 49, 1975 (2008).Google Scholar
5. Nagel, C., Ratzke, K., Schmidtke, E., Faupel, F. and Ulfert, W., Phys. Rev. B, 60, 9212 (1999)Google Scholar
6. Krištiaková, K., Krištiak, J., Švec, P., Šauša, O. and Duhaj, P., Mater. Sci. Eng. B, 39, 15 (1996).Google Scholar
7. Kawamata, T., Yokoyama, Y., Saito, M., Sugiyama, K. and Waseda, Y., Mater. Trans., 51, 1796 (2010).Google Scholar
8. Saida, J., Matsushita, M., Inoue, A., Intermetallics 10, 1089 (2002).Google Scholar
9. Matsuura, M., Fujita, T., Kawashima, A., Yuqiao, Z., Kimura, H., Guan, P., Chen, M., Inoue, A., Konno, K., Asada, K., J. Alloys Comp., 496, 135 (2010).Google Scholar
10. Yokoyama, Y., Inoue, K., Fukaura, K., Mater. Trans. 43, 2316 (2002).Google Scholar
11. Yokoyama, Y., Fukaura, K., Inoue, A., Intermetallics 10, 1113 (2002).Google Scholar
12. Haruyama, O. and Inoue, A., Appl. Phys. Lett., 88, 1319060 (2006).Google Scholar
13. Kirkegaard, P., Eldrup, M., Mogensen, O. E., Pedersen, N. J., Comp. Phys. Commun., 23, 307 (1981).Google Scholar
14. Hautojarvi, P., “Positrons in Solids,” (Springer-Verlag, Berlin 1979).Google Scholar
15. Ishii, A., Hori, F., Iwase, A., Fukumoto, Y., Yokoyama, Y. and Konno, T. J., J. Alloys Comp., 504, 230 (2010).Google Scholar
16. Ishii, A., Mineno, S., Iwase, A., Fukumoto, Y., Yokoyama, Y., Konno, T. J. and Hori, F., Mater. Sci. Forum, 654-656, 10701073 (2010).Google Scholar
17. Krause-Rehberg, R., Leipner, H. S., “Positron Annihilation in Semiconductors 127” (Springer-Verlag, New York 1998).Google Scholar
18. Saida, J., Matsushita, M., Inoue, A., Mater. Trans, 41, 1505 (2000).Google Scholar