Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:35:08.164Z Has data issue: false hasContentIssue false

The Effects of Device Dimension, Substrate Temperature, and Gate Metallization on the Reliability of AlGaN/GaN High Electron Mobility Transistors

Published online by Cambridge University Press:  29 February 2012

F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
Lu Liu
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL 32611
T.-S. Kang
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL 32611
E. A. Douglas
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
C. Y. Chang
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
C.-F. Lo
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville FL 32611
D. A. Cullen
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287
L. Zhou
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287
D. J. Smith
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287
Get access

Abstract

The effects of source field plates on AlGaN/GaN High Electron Mobility Transistor reliability under off-state stress conditions were investigated using step-stress cycling. The source field plate enhanced the drain breakdown voltage from 55V to 155V and the critical voltage for off-state gate stress from 40V to 65V, relative to devices without the field plate. Transmission electron microscopy was used to examine the degradation of the gate contacts. The presence of cracking that appeared on both source and drain side of the gate edges was attributed to the inverse piezoelectric effect. In addition, a thin oxide layer was observed between the Ni gate contact and the AlGaN layer, and both Ni and oxygen had diffused into the AlGaN layer. The critical degradation voltage of AlGaN/GaN High Electron Mobility Transistors during off-state electrical stress was determined as a function of Ni/Au gate dimensions (0.1-0.17μm). Devices with different gate length and gate-drain distances were found to exhibit the onset of degradation at different source-drain biases but similar electric field strengths, showing that the degradation mechanism is primarily field-driven. The temperature dependence of sub-threshold drain current versus gate voltage at a constant drain bias voltage were used to determine the trap densities in AlGaN/GaN high electron mobility transistors (HEMTs) before and after the off-state stress. Two different trap densities were obtained for the measurements conducted at 300-493K and 493-573K, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meneghesso, G., Verzellesi, G., Danesin, F., Rampazzo, F., Zanon, F. and Tazzoli, A., IEEE Trans. Dev. Mater. Reliab. 8, 332 (2008).Google Scholar
2. Joh, J. and del Alamo, J. A., IEEE Electron Device Lett. 29, 287 (2008).Google Scholar
3. Makaram, P., Joh, J., del Alamo, J. A., Palacios, T., and Thompson, C. V., Appl. Phys. Lett. 96, 233509 (2010).Google Scholar
4. Chowdhury, U., Jimenez, J. L., Lee, C., Beam, E., Saunier, P., Balistreri, T., Park, S. Y. Lee, T., Wang, J., Kim, M.J., Joh, J. and del Alamo, J.A., IEEE Electron Device Lett. 29, 1098 (2008).Google Scholar
5. Joh, J. and del Alamo, J. A., IEDM Tech. Dig. 415 (2006).Google Scholar
6. Saunier, P., Lee, C., Balistreri, A., Dumka, D., Jimenez, J., Tserng, H. Q., Kao, M. Y., Chao, P. C., Souzis, A., Eliashevich, I., Guo, S., del Alamo, J., Joh, J. and Shur, M., Proc. Device Res. Conf. 35 (2007).Google Scholar
7. del Alamo, J. A. and Joh, J., Microelectronics Reliab. 49, 1200 (2009).Google Scholar
8. Zanoni, E., Meneghesso, G., Verzellesi, G., Danesin, F., Meneghini, M., Rampazzo, F., Tazzoli, A., and Zanon, F., IEDM 381 (2007).Google Scholar
9. Faqir, M., Verzellesi, G., Meneghesso, G., Zanoni, E., and Fantini, F., IEEE Trans. Electron Devices 55, 1592 (2008).Google Scholar
10. Meneghesso, G., Rampazzo, F., Kordoš, P., Verzellesi, G., and Zanoni, E., IEEE Trans. Electron Devices 53, 2932 (2006).Google Scholar
11. Singhal, S., Roberts, J. C., Rajagopal, P., Li, T., Hansen, A. W., Therrien, R., Johnson, J. W., Kizilyalli, I. C. and Linthicum, K. J., Proc. IEEE Int. Rel. Phys. Symp. 95 (2006).Google Scholar
12. Chang, C.Y., Anderson, T., Hite, J., Lu, L., Lo, C. F., Chu, B. H., Cheney, D. J., Douglas, E. A., Gila, B. P., Ren, F., Via, G. D., Whiting, P., Holzworth, R., Jones, K. S., Jang, S. and Pearton, S. J., J. Vac. Sci. Technol. B 28, 1044 (2010).Google Scholar
13. Piner, E., Singhal, S., Rajagopal, P., Therrien, R., Roberts, J. C., Li, T., Hanson, A.W., Johnson, J.W., Kizilyalli, I.C., and Linthicum, K.J., IEDM Tech. Dig. 411 (2006).Google Scholar
14. Kumar, V., Chen, G., Guo, S., and Adesida, I., IEEE Trans. Electron Devices 53, 1477 (2006).Google Scholar
15. Hori, Y., Kuzuhara, M., Ando, Y., and Mizuta, M., J. Appl. Phys. 87, 3483 (2000).Google Scholar
16. Karmalkar, S., Shur, M. S., Simin, G., and Khan, M. A., IEEE Trans. Electron Devices 52, 2534 (2005).Google Scholar
17. Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I. and Ogura, T., Japanese Journal of Applied Physics 43, 2239 (2004).Google Scholar
18. Zhang, P., Rowland, L. B., Kaminsky, E. B., Tilak, V., Grande, J. C., Teetsov, J., Vertiatchikh, A. and Eastman, L. F., J. Eletron. Mater. 32, 388 (2003).Google Scholar
19. 10. Kim, H., Vertiatchikh, A., Thompson, R. M., Tilak, V., Prunty, T. R., Shealy, J. R. and Eastman, L. F., Microelectron. Reliab. 43, 823 (2003).Google Scholar
20. 11. Gassoumi, M., Fathallah, O., Gaquiere, C. and Maaref, H., Physica B 405, 2337 (2010).Google Scholar
21. 12. Gassoumi, M., Ben Salem, M. M., Saadaoui, S., Grimbert, B., Fontaine, J., gaquiere, C. and Maaref, H., Microelectron. Eng. 88, 370 (2011).Google Scholar
22. 13. Mitrofanov, O., Manfra, M. and Weimann, Nils, Appl. Phys. Lett. 82, 4361 (2003).Google Scholar
23. 14. Tan, W. S., Houston, P. A., Parbrook, P. J., Wood, D. A., Hill, G., and Whitehouse, C. R., Appl. Phys. Lett. 80, 3207 (2002).Google Scholar
24. 15. Kordoš, P., Donoval, D., Florovič, M., Kováč, J. and Gregušová, D., Appl. Phys. Lett. 92, 152113 (2008).Google Scholar
25. 16. Semra, L., Telia, A. and Soltanib, A., Surf. Interface Anal. 42, 799 (2010).Google Scholar
26. 17. Look, D. C., Farlow, G. C., Drevinsky, P. J., Bliss, D. F. and Sizelove, J. R., Appl. Phys. Lett. 83, 3525 (2003).Google Scholar
27. 18. Hasegawa, H., Inagaki, T., Ootomo, S. and Hashizume, T., J. Vac. Sci. Technol. B 21, 1844 (2003).Google Scholar
28. 19. Gassoumi, M., Bluet, J. M., Gaquiere, C., Guillot, G., Maaref, H., Microelectron. J. 40, 1161 (2009).Google Scholar
29. 20. Xie, S. Y., Yin, J. Y., Zhang, S., Liu, B., Zhou, W. and Feng, Z. H., Solid-State Electronics 53, 1183 (2009).Google Scholar
30. 21. Liu, W. L., Chen, Y. L., Balandin, A. A. and Wang, K. L., J. Nanoelectron. Optoelectron 1, 258 (2006).Google Scholar
31. 22. Stoklas, R., Gregušová, D., Novák, J., Vescan, A. and Kordoš, P., Appl. Phys. Lett. 93, 124103 (2008).Google Scholar
32. Chung, J. W., Roberts, J. C., Piner, E. L. and Palacios, T., IEEE Electron Device Lett. 29, 1196 (2008).Google Scholar
33. 27. Chung, J. W., Zhao, X., and Palacios, T., in Proc. 65th Device Res. Conf., 111 (2007).Google Scholar