Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:57:51.159Z Has data issue: false hasContentIssue false

Effects of Ge on The Nucleation and Growth of Si1−xGex

Published online by Cambridge University Press:  15 February 2011

S. Yamaguchi
Affiliation:
Central Research Lab., Hitachi Ltd., Tokyo 185-8601, Japan, yamaguci@crl.hitachi.co.jp
S. K. Park
Affiliation:
Central Research Lab., Hitachi Ltd., Tokyo 185-8601, Japan, yamaguci@crl.hitachi.co.jp
N. Sugii
Affiliation:
Central Research Lab., Hitachi Ltd., Tokyo 185-8601, Japan, yamaguci@crl.hitachi.co.jp
K. Nakagawa
Affiliation:
Central Research Lab., Hitachi Ltd., Tokyo 185-8601, Japan, yamaguci@crl.hitachi.co.jp
M. Miyao
Affiliation:
Central Research Lab., Hitachi Ltd., Tokyo 185-8601, Japan, yamaguci@crl.hitachi.co.jp
Get access

Abstract

Nucleation and growth properties of Si1-xGex (0≦x≦0.3) have been investigated by using ellipsometric spectroscopy. The incubation time and the crystallization time significantly decrease with increasing x; the estimated incubation time (and crystallization time) in Si0.7Ge0.3 is about 1/100 of that in Si. During the incubation time, the increase of the crystallinity has been observed which corresponds to the nucleation of crystal seeds. From the behavior of the crystallinity during the incubation and the crystallization time, we estimated the activation energy of the nucleation and the crystallization. Both energies monotonically decrease with increasing x. The saturated crystallinity after crystallization decreases with increasing x. It has been found that the effect of Ge reduces the crystallinity of Si1-xGex while significantly enhancing the crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rggeferences

1. Lee, S., Jeon, Y., and Joo, S., Appl. Phys. Lett. 66, p. 1,671 (1995).Google Scholar
2. Nast, O., Puzzer, T., Koschier, L. M., Sproul, A. B., and Wenham, S. R., Appl. Phys. Lett. 73, p. 3,214 (1998).Google Scholar
3. Hultman, L., Robertsson, A., Hentzell, H. T. G., Engstrom, I., and Psaras, P. A., J. Appl. Phys. 62, p. 3,647 (1987).Google Scholar
4. Jin, Z., Bhat, G. A., Yeung, M., Kwok, H. S., and Wong, M., I. Appl. Phys. 84, p. 194 (1998).Google Scholar
5. Yoon, S. Y., Oh, J. Y., Kim, C. O., and Jang, J., J. Appl. Phys. 84, p. 6,463 (1998).Google Scholar
6. Kringhoj, P., and Elliman, R. G., Phys. Rev. Lett. 73, p. 858 (1994).Google Scholar
7. Hwang, C., Ryu, M., Kim, K., Lee, S., Kim, C., J. Appl. Phys. 77, p. 3,042 (1995).Google Scholar
8. Pickering, C. and Carline, R. T., J. Appl. Phys. 75, p. 4,642 (1994).Google Scholar
9. Cardona, M. and Pollak, F. H., Phys. Rev. 142, p. 530 (966).Google Scholar
10. Olson, G. L. and Roth, J. A., Handbook of Crystal Growth, Elsevier, 3, p. 274 (1994).Google Scholar
11. Olson, G. L. et al. , MRS Proceedings, 85, p. 141 (1982).Google Scholar