Published online by Cambridge University Press: 10 February 2011
Basic design requirements of scaffolds for bone tissue engineering applications include biocompatibility, temporally controlled degradability, osteoconductivity, mechanical integrity, and mass transport capabilities. A recent study has attempted to meet design criteria via the growth of a carbonated apatite (bone-like) mineral on the inner pore surfaces of a highly porous 85:15 poly(lactide-co-glycolide) scaffold using a biomimetic process. It has also been recently demonstrated that the mineralization strategy can be combined with sustained growth factor delivery to induce vascular tissue ingrowth. The present study examines the effect of protein presence on the mineralization process by measuring the amount of protein incorporated into the scaffold during the process of mineral formation. Surprisingly, vascular endothelial growth factor incorporates more readily into control scaffolds than into scaffolds subjected to mineralization treatment. This finding suggests that there is little incorporation of protein into the growing mineral film, and offers insight into the mechanism for sustained drug delivery from the mineralized scaffolds.