Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:00:56.168Z Has data issue: false hasContentIssue false

The Electric Field Measuring by Phase Selective Photoreflectance

Published online by Cambridge University Press:  10 February 2011

J. S. Hwang
Affiliation:
National Cheng Kung University, Department of physics, Tainan, Taiwan.
W. Y. Chou
Affiliation:
National Cheng Kung University, Department of physics, Tainan, Taiwan.
S. L. Tyan
Affiliation:
National Cheng Kung University, Department of physics, Tainan, Taiwan.
Y. C. Wang
Affiliation:
National Cheng Kung University, Department of physics, Tainan, Taiwan.
H. Shen
Affiliation:
U.S. Army Research Laboratory, Physical Science Directorate, AMSRL-PS-PB, Fort Monmouth, New Jersey 07703–5601
Get access

Abstract

The built-in electric fields in a MBE grown δ-doped GaAs homojunction have been investigated by the techniques of photoreflectance and phase suppression. Two Franz-Keldysh oscillation features originating from two different fields in the structure superimpose with each other in the photoreflectance spectrum. By properly selecting the reference phase of the lock-in amplifier, one of the features can be suppressed, thus enabling us to determine the electric fields from two different regions. We have demonstrated that only two PR spectra, in-phase and outphase components, are needed to find the phase angle which suppresses one of the features. The electric field in the top layer is 3.5 ± 0.2 × 105 V/cm, which is in good agreement with theoretical calculation. The electric field in the buffer layer is 1.2 ± 0.1 × 104 V/cm, which suggests the existence of interface states at the buffer/substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pollak, F. H. and Glembocki, O., in Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE, Bellighm 1988) Vol.946, p. 2 (1988).Google Scholar
2. Bottka, N., Gaskill, D. K., Sillmon, R. S., Henry, R., and Glosser, R., J. Electron. Mater. 17, 161 (1988).Google Scholar
3. Bhattacharya, R. N., Shen, H., Parayanthal, P., Pollak, F. H., Coutts, T., and Aharoni, H., Phys. Rev. B 37, 4044 (1988).Google Scholar
4. Pollak, F. H. and Shen, H. in Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE, Bellingham, 1989), Vol. 1037, p. 16.Google Scholar
5. Badkashan, A., Durbin, C., Giordana, A., Glosser, R., Lambert, S. A., and Liu, J., in Nanostructure Physics and Fabrication, edited by Reed, M. A. and Kirk, W. P. (Academic, Boston, 1989). p. 485.Google Scholar
6. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. and Hafizi, M., Appl. Phys. Lett., 56, 1278 (1990).Google Scholar
7. Sydor, Michael, Jahren, Neal, Mitchel, W. C., Lampert, W. V., Haas, T. W., Yen, M. Y., Mudare, S. M. and Tomich, D. H., J. Appi. Phys. Vol.67, 7423 (1990).Google Scholar
8. Hwang, J. S., Hang, Z., Tyan, S. L., Ding, S. W., Tung, J. H., Chen, C. Y., Lee, B. J. and Hsu, J. T., Jpn. J. Appl. Phys. Vol.31, L571 (1992).Google Scholar
9. Krystek, W., Qiang, H. and Pollak, F. H., Proc. of the 21th international Symposium on Compound Semiconductor, Sen Diego, CA, Sept 1994.Google Scholar
10. Zhou, W., Dutta, M., Shen, H., Pamulapati, J., Bennett, B. R., Perry, C. H. and Weyburne, D. W., J. Appl. Phys. 73, 1266 (1993).Google Scholar
11. Lopsanen, H. K., and Airaksinen, V. M., Appl. Phys. Lett. 63, 2863 (1993).Google Scholar
12. Alperovich, V. L., Jaroshevich, A. S, Scheibler, H. E. and Terekhov, A. S., Solid-State Electronics Vol.37, 657 (1994).Google Scholar
13. Cho, A. Y., Thin Solid Films, 100, 291 (1983).Google Scholar
14. Shay, J. L., Phys. Rev. B 2, 803 (1970).Google Scholar
15. Shen, H., Parayanthal, P., Liu, Y. E. & Pollak, F. H., Rev. Sci. Intrum. 58(8), 1429 (1987).Google Scholar
16. Shen, H., Dutta, M., Fotiadis, L., Newman, P. G., Moerkirk, R. P., and Chang, W. H., Appl. Phys. Lett., 57, 2118 (1990).Google Scholar
17. Schubert, E. F. and Ploog, K., Jpn. J. Appl. Phys., Vol.24, L608 (1985). E. F. Schubert, A. Fischer and K. Ploog, IEEE Trans. Electron Device, Vol. ED-33, 625 (1986).Google Scholar
18. Wood, C. E. C., Metze, G., Berry, J. and Eastman, L. F., J. Appl. Phys. 51, 383 (1980).Google Scholar
19. Hwang, J. S., Tyan, S. L., Chou, W. Y., Lee, M. L., Weyburne, D., Hang, Z., Lin, H. H. and Lee, T. L., Appl. Phys. Lett. 64, 3314 (1994).Google Scholar
20. Yin, X., Chen, H. M., Pollak, F. H., Cao, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Vac. Sci. Technol. A 10, 131 (1992).Google Scholar