Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T05:10:06.406Z Has data issue: false hasContentIssue false

Electrical Characterization of Residual Implantation-Induced Defects in the Vicinity of Laser-Annealed Implanted Ultrashallow Junctions

Published online by Cambridge University Press:  01 February 2011

V. Gonda
Affiliation:
v.gonda@dimes.tudelft.nl, Delft University of Technology, DIMES-ECTM, Feldmannweg 17, Delft, N/A, 2628 CT Delft, Netherlands, +31 15 278 8837, +31 15 262 2163
S. Liu
Affiliation:
s.liu@student.tudelft.nl, Delft University of Technology, DIMES-ECTM, POB 5053, Delft, N/A, 2600 GB, Netherlands
T.L.M. Scholtes
Affiliation:
scholtes@dimes.tudelft.nl, Delft University of Technology, DIMES-ECTM, POB 5053, Delft, N/A, 2600 GB, Netherlands
L.K. Nanver
Affiliation:
nanver@dimes.tudelft.nl, Delft University of Technology, DIMES-ECTM, POB 5053, Delft, N/A, 2600 GB, Netherlands
Get access

Abstract

Ultrashallow junctions (USJ) were created by tilted 5 keV As+ implantation to a dose of 3x1015 cm−2 followed by excimer laser annealing (ELA). Sheet resistance and capacitances were measured in the background layer below the USJ. Results showed that sheet resistance was dependent on the laser energies in the close vicinity of these diodes. Doping profiles extracted from the capacitances indicated electrical deactivation here caused by the residual implantation defects. The extent and location of the residual damage is shown to be strongly dependent on the implantation dose and tilt angles, and also influenced by the laser annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lorito, G., Gonda, V., Liu, S., Scholtes, T. L. M., Schellevis, H. and Nanver, L. K., “Reliability issues related to laser-annealed implanted back-wafer contacts in bipolar silicon-on-glass processes,” to be presented at IEEE-MIEL (2006).Google Scholar
2 Buisman, K., Nanver, L. K., Scholtes, T. L. M., Schellevis, H., and Vreede, L. C. N. de, “High-Performance Varactor Diodes Integrated in a silicon-on-glass Technology,” in Proc. ESSDERC (2005).Google Scholar
3 Nanver, L. K., Slabbekoorn, J., Burtsev, A., Scholtes, T. L. M., Surdeanu, R., Simon, F., Kalhert, H.-J., and Slotboom, J. W., “Electrical characterization of silicon diodes formed by laser annealing of implanted dopants,” in Proc. ECS, 14, 119–30 (2003).Google Scholar
4 Gonda, V., Burtsev, A., Scholtes, T. L. M., and Nanver, L. K., “Near-Ideal Implanted Shallow-Junction Diode Formation by Excimer Laser Annealing,” in Proc. IEEE-RTP, 13, 93100 (2005).Google Scholar
5 Leveque, P., Nielsen, H. Kortegaard, Pellegrino, P., and Hallen, A., “Vacancy and Interstitial Depth Profiles in Ion-Implanted Silicon,” J. Appl. Phys. 92, 871 (2003).Google Scholar
6 Burtsev, A., Schut, H., Nanver, L. K., Veen, A. van, Slabbekoorn, J. and Scholtes, T.L.M., “Surface Morphologies of Excimer Laser Annealed BF2 + Implanted Si Diodes,” in Proc. EMRS (2004).Google Scholar
7 Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M., Maes, H. E., “Transient Enhanced Diffusion of Boron in Si,” J. Appl. Phys. 91, 8919 (2002).Google Scholar
8 Jones, K. S., Banisaukas, H., and Glassberg, J., “Transient Enhanced Diffusion After Laser Thermal Processing of Ion Implanted Silicon,” Appl. Phys. Lett. 75, 3659 (1999).Google Scholar
9 Mannino, G., Privitera, V., Magna, A. La, and Rimini, E., “Depth Distribution of B Implanted Si after Excimer Laser Irradiation,” Appl. Phys. Lett. 86, 051909 (2005).Google Scholar
10 Liu, S., Gonda, V., Scholtes, T. L. M., and Nanver, L. K., “Electrical Characterization of Residual Bulk Defects after Laser Annealing of Implanted Shallow Junctions,” to be presented at IEEE-IWJT (2006).Google Scholar