Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T20:02:44.126Z Has data issue: false hasContentIssue false

Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films

Published online by Cambridge University Press:  21 March 2011

Tadatsugu Minami
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, JAPAN
Shingo Suzuki
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, JAPAN
Toshihiro Miyata
Affiliation:
Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, JAPAN
Get access

Abstract

In this paper, we describe the underlying theory along with experiments concerning the electrical conductivity of transparent conducting ZnO films with a carrier concentration of 1019-1021 cm−3. The experimentally determined mobility as a function of carrier concentration in the range of 1019-1021 cm−3 could be quantitatively referenced to a theoretically calculated mobility that is dominated by not only grain boundary scattering but also ionized impurity scattering using the Brooks-Herring-Dingle theory with both degeneracy and nonparabolicity of the conduction band taken into account. Concerning nonparabolicity, the conduction band effective mass as a function of carrier concentration was theoretically analyzed and experimentally determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minami, T., Nanto, H. and Takata, S., Jpn. J. Appl. Phys., 23, p.L280 (1984).Google Scholar
2. Minami, T., MRS Bulletin, 25, p.38 (2000).Google Scholar
3. Roth, A.P., Webb, J.B. and Williams, D.F., Phys. Rev., B 25, p.7836 (1982).Google Scholar
4. Minami, T., Nanto, H. and Takata, S., Jpn. J. Appl. Phys., 24, p.L605 (1985).Google Scholar
5. Sernelius, B.E., Berggren, K.F., Jin, Z.C., Hamberg, I. and Granqvist, C.G., Phys. Rev., B 37, p.10244 (1988).Google Scholar
6. Minami, T., Sato, H., Ohashi, K., Tomofuji, T. and Takata, S., J. Crystal Growth, 117, p.370 (1992).Google Scholar
7. Sato, H., DEng thesis, Kanazawa Institute of Technology, (1994).Google Scholar
8. Minami, T., Sato, H., Nanto, H. and Takata, S., Jpn. J. Appl. Phys., 24, p.L781 (1985).Google Scholar
9. Sato, H., Minami, T. and Takata, S., J. Vac. Sci. Technol., A 11, p.2975 (1993).Google Scholar
10. Pisarkiewicz, T., Zakrzewska, K. and Leja, E., Thin Solid Films, 174, p.217 (1989).Google Scholar
11. Blakemore, J.S., J. Appl. Phys., 53, R123 (1982).Google Scholar
12. Coutts, T.J., Young, D.L. and Li, X., MRS Bulletin, 25, p.58 (2000).Google Scholar
13. Szmyd, D.M., Porro, P. and Majerfeld, A., J. Appl. Phys., 68, p.2376 (1990).Google Scholar
14. Szmyd, D.M., Porro, P., Majerfeld, A. and Lagomarsino, S., J. Appl. Phys., 68, p.2367 (1990).Google Scholar
15. Vrehen, Q.H.F., J. Phys. Chemi. Solids, 29, p.129 (1968).Google Scholar
16. Seto, J.Y.W., J. Appl. Phys., 46, p.5247 (1975).Google Scholar