Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T23:31:17.675Z Has data issue: false hasContentIssue false

Electrochemical synthesis of a ZnO nanowire field-effect transistor

Published online by Cambridge University Press:  01 February 2011

Travis Lee Wade*
Affiliation:
travis.wade@polytechnique.edu, ECOLE Polytechnique, Laboratoire des Solides Irradies, Route de Saclay, Palaiseau, 91128, France, 00 33 (0)1 33 33 39 98, 00 33 (0)1 33 33 30 20
Get access

Abstract

Aluminum wires are electrochemically sculptured into bi-directional templates for the growth and contacting of nanowires as three terminal devices. The utility of this nanostructured micro-template is demonstrated by a ZnO nanowire surrounding gate field-effect transistor. This bottom-up approach to a 3-D nanowire transistor is unique in that it can be almost entirely fabricated in a beaker using aqueous, room-temperature electrochemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindaraj, A. 2003 Progress in Solid State Chemistry 31 5147 Google Scholar
2. Doudin, B.; Blondel, A.; Ansermet, J. P. 1996 Journal of Applied Physics 79 60906094 Google Scholar
3. Dubois, S.; Duvall, J. L.; Fert, A.; George, J. M.; Maurice, J. L.; Piraux, L. 1997 Journal of Applied Physics 81 4569–4569Google Scholar
4. Schwarzacher, W.; Kasyutich, O. I.; Evans, P. R.; Darbyshire, M. G.; Yi, G.; Fedosyuk, V. M.; Rousseaux, F.; Cambril, E.; Decanini, D. 1999 199 185190 Google Scholar
5. Levy, P.; Leyva, A. G.; Troiani, H. E.; Sanchez, R. D. 2003 Applied Physics Letters 83 52475249 Google Scholar
6. Piraux, L.; Encinas, A.; Vila, L.; Màtéfi-Tempfli, S.; Màtéfi-Tempfli, M.; Darques, M.; Elhoussine, F.; Michotte, S. 2005 Journal of Nanoscience and Nanotechnology 5 372389 Google Scholar
7. Wade, T. L.; Wegrowe, J.-E. 2005 The European Physical Journal Applied Physics 29 322 Google Scholar
8. Nielsch, K.; Müller, F.; Li, A.-P.; Gösele, U. 2000 Advanced Materials 12 582586 Google Scholar
9. Keller, F.; Hunter, M. S.; Robinson, D. L. 1953 Journal of the Electrochemical Scoiety 100 411 Google Scholar
10. O'Sullivan, J. P.; Wood, G. C. 1970 Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 317 511-&Google Scholar
11. Masuda, H.; Fukuda, K. 1995 Science 268 14661468 Google Scholar
12. Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. 2002 Nano Letters 2 677680 Google Scholar
13. Jessensky, O.; Muller, F.; Gosele, U. 1998 Applied Physics Letters 72 11731175 Google Scholar
14. Hoffer, X.; Klinke, C.; Bonard, J.-M.; Gravier, L.; Wegrowe, J.-E. 2004 EUROPHYSICS LETTERS 67 103109 Google Scholar
15. Wegrowe, J.-E.; Gilbert, S. E.; Kelly, D.; Doudin, B.; Ansermet, J.-P. 1998 IEEE Transactions on Magnetics 34 903905 Google Scholar
16. Dayen, J. F.; Wade, T. L.; Konczykowski, M.; Wegrowe, J. E.; Hoffer, X. 2005 Physical Review B 27 073402 Google Scholar
17. Wade, T.; Wegrowe, J.-E. Procede de fabrication de composants electroniques et composants electroniques obtenus par ce procede. patent application 2003.Google Scholar
18. Bryllert, T.; Wernersson, L. E.; Froberg, L. E.; Samuelson, L. 2006 IEEE Electron Device Letters 27 323325 Google Scholar
19. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. 2006 Nano Letters 6 973977 Google Scholar
20. Schulz, T.; Rösner, W.; Landgraf, E.; Risch, L.; Langmann, U. 2002 Solid-State Electronics 46 985989 Google Scholar
21. Chen, J.; Konenkamp, R. 2003 Applied Physics Letters 82 47824784 Google Scholar
22. Sharma, A. K.; Zaidi, S. H.; Lucero, S.; Brueck, S. R. J.; Islam, N. E. 2004 IEE Proc.-Circuits Devices Syst. 151 422430 Google Scholar
23. Djozan, D.; Assadi, Y.; Haddadi, S. H. 2001 Analytical Chemistry 73 40544058 Google Scholar
24. Djozan, D.; , M., , A.-Z. 2003 Surface & Coatings Technology 173 185191 Google Scholar
25. Cojocaru, C. S.; Padovani, J. M.; Wade, T.; Mandoli, C.; Jaskierowicz, G.; Wegrowe, J.-E.; Morral, A. F.-i.; Pribat, D. 2005 Nano Letters 5 675680 Google Scholar
26. Zhang, H.; Zhi, C.; Li, T.; Saito, K. 2005 Journal of Nanoscience and Nanotechnology 5 17451748 Google Scholar
27. Fan, Z.; Wang, D.; Chang, P.-C.; Tseng, W.-Y.; Lu, J. G. 2004 Applied Physics Letters 85 5923 Google Scholar
28. Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J. 2004 Materials Science and Engineering R 47 147 Google Scholar
29. Heo, Y. W.; Tien, L. C.; Kwon, Y.; Norton, D. P.; Pearton, S. J. 2004 Applied Physics Letters 85 22742276 Google Scholar
30. Pourbaix, M., Atlas d'Equilibres Èlectrochimiques. Gauthier-Villars: Paris, 1963; Vol. Chapter 15 Zinc.Google Scholar
31. Peulon, S.; Lincot, D. 1998 Journal of the Electrochemical Scoiety 145 864874 Google Scholar
32. Leprince-Wang, Y.; Wang, G. Y.; Zhang, X. Z.; Yu, D. P. 2006 Journal of Crystal growth 287 8993 Google Scholar
33. Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M. 2003 Nano Letters 3 10971101 Google Scholar
34. Morpurgo, A. F.; Kong, J.; Marcus, C. M.; Dai, H. 1999 Science 286 5438 Google Scholar
35. Haruyama, J.; Tokita, A.; Kobayashi, N.; Nomura, M.; Miyadai, S.; Takazawa, K.; Takeda, A.; Kanda, Y. 2004 Applied Physics Letters 84 47144716 Google Scholar