Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T09:30:50.293Z Has data issue: false hasContentIssue false

Electroless Cu Deposition on Self-assembled Monolayer Alternative Barriers

Published online by Cambridge University Press:  31 January 2011

Silvia Armini
Affiliation:
armini@imec.be, IMEC, Leuven, Belgium
Arantxa Maestre Caro
Affiliation:
caro@imec.be, IMEC, Leuven, Belgium
Get access

Abstract

An alternative bottom-up Cu electro-less deposition (ELD) method without other catalyst material activation tested on blanket wafers, is the focus of this paper. The process consists in reducing the Cu ions via standard reducing agents, such as dimethylamine borane (DMAB). A wide range of experimental conditions such as pH, temperature, Cu ion concentration and time are investigated and the Cu layer nucleation and growth mechanism is evaluated on clean SiO2 and after functionalization with 3-aminopropyltrimethoxysilane (APTS) self-assembled monolayer (SAM) used as copper diffusion barrier. The barrier properties of the APTS layer after Cu ELD are also assessed by copper resistivity measurements and visual inspections as a function of the annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chen, J. Reed, M. A. Rawlett, A. M. Tour, J. M. Science, 286, 1550, (1999).Google Scholar
[2] Halls, J. J. Walsh, C. A. Greenham, N. C. Marseglia, E. A. Friend, R. H. Moratti, S. C. Holmes, A. B. Nature, 376, 498, (1995).Google Scholar
[3] Friend, R. H. Gymer, R. W. Holmes, A. B. Burroughes, J. H. Marks, R. N. Taliani, C. Bradley, D. D. Santos, D. A. Dos, Bredas, J. L. Logdlund, M. Salaneck, W. R. Nature, 397, 121, (1997).Google Scholar
[4] Glickman, E. Inberg, N. Fishelson, A. Shacham-Diamand, Y., Microelec. Eng., 84, 2466, (2007).Google Scholar
[5] Caro, A. Maestre, Maes, G. Borghs, G. Whelan, C. M. Microelec. Eng., 85, 10, 2047, (2008).Google Scholar
[6] Yoshino, M. Masuda, T. Yokoshima, T. Sasano, J. Shacham-Diamand, Y., Maduda, I. Osaka, T. Hagiwara, Y. Sato, I., J. Electrochem. Soc., 154, 3, D122, (2007).Google Scholar
[7] Zhu, P. Masuda, Y. Koumoto, K. J. Mater. Chem., 14, 976, (2004).Google Scholar
[8] Hughey, M. P. Morris, D. J. Cook, R. F. Bozeman, P. Steven, P. B. Srinivas, L. K. Chakravarty, L. N. Harkens, D. P., Stearns, L. C. Engineering Fracture Mechanics, 71, 2, 245, (2004).Google Scholar
[9] Dauskardt, R. H. M., Lane, Ma, Q. Krishna, N. Engineering Fracture Mechanics, 61, 141, (1998).Google Scholar
[10] Gong, Y. K. Nakashima, K. Langmuir, 16, 8546, (2000).Google Scholar
[11] Hozumi, A. Yokogawa, Y. Kameyama, T. Sugimura, H. Hayashi, K. Shirayama, H. Takai, O. J. Vac. Sci. Technol. A, 19, 1812, (2001).Google Scholar
[12] Dulcey, C. S. Georger, J. H. Jr. , Krauthamer, V. Strenger, D. A. Fare, T. L. Calvert, J. M. Science, 252, 551, (1991).Google Scholar
[13] Shyue, J.-J., Tang, Y. Guire, M. R. De, J. Mater. Chem., 15, 323, (2005).Google Scholar
[14] Liu, Z.-Z., Wang, Q. Liu, X. Bao, J.-Q.-, Thin Solid Films, 517, 635, (2008).Google Scholar
[15] Ganesan, P. G. Cui, G. Vijayamohanan, K. Lane, M. Ramanath, G. J. Vac. Sci. Technol. B, 23, 327, (2005).Google Scholar
[16] Armini, S. Caro, A. Maestre, Whelan, C. M. in preparation, (2009).Google Scholar