Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T04:59:11.853Z Has data issue: false hasContentIssue false

Electronic Properties of Cu-In-S Solar Cells on Cu-Tape Substrate

Published online by Cambridge University Press:  21 March 2011

Igor Konovalov
Affiliation:
Institut für Solartechnologien, Im Technologiepark 7, 15236 Frankfurt (Oder), Germany
Jürgen Penndorf
Affiliation:
Institut für Solartechnologien, Im Technologiepark 7, 15236 Frankfurt (Oder), Germany
Michael Winkler
Affiliation:
Institut für Solartechnologien, Im Technologiepark 7, 15236 Frankfurt (Oder), Germany
Olaf Tober
Affiliation:
Institut für Solartechnologien, Im Technologiepark 7, 15236 Frankfurt (Oder), Germany
Get access

Abstract

Thin film solar cells obtained by the “CIS on copper tape” technique are investigated. This technique promises a high throughput capability, but the efficiency of the cells is still about 5 % only. The model of the band structure of the absorber has been introduced into the model of the whole cell. Parameters of the model were determined experimentally by use of quantitative EBIC profiling, C-V doping profiling, Hall measurements, and AFM. The structure has been simulated using SCAPS-1D software. Results of the simulation show a good correlation to the measured I-V and DSR data of the cell. The benefits and drawbacks of the cell structure as well as factors limiting its efficiency are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jacobs, K., Penndorf, J., Röser, D., Tober, O., Winkler, M., Proc. 2nd WCEPSEC, Vienna, 409412 (1998).Google Scholar
2. Penndorf, J., Winkler, M., Tober, O., Röser, D., Jacobs, K., Solar Energy Mater. and Solar Cells 53, 285298 (1998).Google Scholar
3. Winkler, M., Tober, O., Penndorf, J., Szulzewsky, K., Röser, D., Lippold, G., Otte, K., Thin Solid Films 361–362, 273277 (2000).Google Scholar
4. Konovalov, I., Tober, O., Winkler, M., Otte, K., Solar Energy Mater. and Solar Cells 67, 4958 (2001).Google Scholar
5. Winkler, M., Penndorf, J., Griesche, J., Konovalov, I., Tober, O., this conference Google Scholar
6. Winkler, M., Griesche, J., Tober, O., Penndorf, J., Blechschmied, E., Szulzewsky, K., Thin Solid Films 387, 8688 (2001).Google Scholar
7. Konovalov, I., Breitenstein, O., Semicond. Sci. Technol. 16, 2630 (2001).Google Scholar
8. Shay, J. L., Wernick, J. H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications Pergamon Press, Oxford, 1975, p. 188.Google Scholar
9. Kitamura, S., Endo, S., Irie, T., J. Phys. Chem. Solids 46, 881885 (1985).Google Scholar
10. Tersoff, J., Surface Science 168 275284 (1986).Google Scholar
11. Klenk, R., Proc. EMRS spring meeting, May/June 2000 Strasbourg, France N-VIII-I (in press).Google Scholar
12. Burgelman, M., Nollet, P., Degrave, S., Thin Solid Films 361–362, 527532 (2000).Google Scholar
13. Orlova, N. S., Bodnar, I. V., Kudritskaya, E. A., Cryst. Res. Technol. 33, 3742 (1998).Google Scholar