Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:56:48.179Z Has data issue: false hasContentIssue false

Electronic Structure of a Nitrogen Vacancy in Cubic Gallium Nitride

Published online by Cambridge University Press:  21 February 2011

V.A. Gubanov
Affiliation:
Physics Department, San Jose State University, San Jose, CA, vgubanov@isc.sjsu.edu
A.F. Wright
Affiliation:
Sandia National Laboratories, Albuquerque, NM
J.S. Nelson
Affiliation:
Sandia National Laboratories, Albuquerque, NM
C.Y. Fong
Affiliation:
Department of Physics, University of California, Davis, CA
B. M. Klein
Affiliation:
Department of Physics, University of California, Davis, CA
Get access

Abstract

A nitrogen vacancy in zinc-blende structure gallium nitride (c-GaN) is investigated by the plane-wave pseudopotential (PWPP) and tight binding-linear combination of muffin tin orbitals (TB-LMTO) methods using 32- and 64- atom supercells. The relaxation of the nearest Ga atom to the vacancy site is found to be inward by 0.069 a.u., with a relaxation energy of 0.04 eV/N-atom vacancy. The shell-projected, total and partial densities of states and the charge density maps are obtained to provide detailed information on energy and spatial localization of the N vacancy states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Akasaki, I., Amano, H., Koide, N., Kotaki, M., and Manabe, K., Physica B, 185, p.428 (1993).Google Scholar
2 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, p.1687 (1994).Google Scholar
3 Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett., 15, p.327 (1969).Google Scholar
4 Nagahara, M., Miyoshi, S., Yaguchi, H., Onabe, K., Shiraki, Y., and Ito, R., J. Crystal Growth, 145, p.1971 (1994).Google Scholar
5 Wright, A. F. and Nelson, J. S., Phys. Rev. B50, p. 2159 (1994).Google Scholar
6 van Schilfgaarde, M., Paxton, T. A., Jepsen, O., and Anderson, O. K., TB-LMTO program-Version 44, Max Plank Institute for Solid State Physics, 1994.Google Scholar
7 Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett.,45, p.556 (1980); J. P. Perdew and A. Zunger, Phys. Rev. B23, p.5048 (1981).Google Scholar
8 Hedin, K. and Lundqvist, B. I., J. Phys. C, 4, p.2064 (1971).Google Scholar
9 Leim, T., Moustakas, T. D., Graham, R. J., He, Y., and Berkowitz, S., J. Appl. Phys., 71, p.4933 (1992).Google Scholar
10 Wright, A. F. and Nelson, J. S., in Physics and Simulation of Optoelectronic Devices III, eds. Osinski, M., and Chow, W. W. (The international Society for Optical Engineering, 2399, Bellingham, WA, 1995), p.498.Google Scholar
11 Gubanov, V. A., Wright, A. F., Nelson, J. S., Fong, C. Y., and Klein, Barry M., (to be published).Google Scholar
12 Neugebauer, J. and van de Walle, C. G., in Diamond, SiC and Nitride Wide-Bandgap Semiconductor, eds. Carter, C. H. Jr., Gildenblat, G., Nakamura, S., Nemanich, J., (MRS Symposia Proceedings, 339, Pittsburgh, Pennsylvania, 1995), p.687.Google Scholar
13 Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Berholc, J., Chervin, J. C., Polian, A., and Moustakas, T. D., Phys. Rev. Lett., 75, 296 (1995).Google Scholar
14 Wetzel, C., Walukiewicz, W., Haller, E. E., Ager, J. W., Chen, A., Fisher, S., Yu, P. Y., Jeanloz, R., Grzegory, I., Porowski, S., Suski, T., Amano, H, and Akasaki, I., proc. 18th Int. Conf. on Defects in Semiconductors, July 24–28, Sendai, japan, 1995.Google Scholar
15 Lambrecht, W. R., Segal, B., Rife, J., Hunter, W. R., and Wickenden, D. K., Phys. Rev. B51, 13516 (1995).Google Scholar