Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:15:50.181Z Has data issue: false hasContentIssue false

Electronic structure of UAsSe and USb2 compounds: the 5f photoemission

Published online by Cambridge University Press:  01 February 2011

E. Guziewicz
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
T. Durakiewicz
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
M. T. Butterfield
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
C. G. Olson
Affiliation:
Ames Laboratory, Iowa State University, Ames IA, USA
J. J. Joyce
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
A. J. Arko
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
J. L. Sarrao
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
A. Wojakowski
Affiliation:
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50–950, Wroclaw, Poland
T. Cichorek
Affiliation:
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50–950, Wroclaw, Poland Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
Get access

Abstract

UAsSe and USb2 single crystals were studied at 15K by angle-resolved photoemission spectroscopy (ARPES) in the photon energy range between 20 eV and 110 eV. The high energy and momentum resolution (24 meV and 0.09Å−1, respectively) allows observation of very narrow and dispersive photoemission features within 100 meV of the Fermi level. The natural linewidth of the near EF feature of USb2 was found to be less than 10 meV with the dispersion of 10 meV observed in normal emission spectra. The near EF feature in UAsSe is slightly broader, situated closer to the Fermi edge, and exhibits 20 meV dispersion in the normal emission spectra. It gives evidence that neither UAsSe nor USb2 have purely 2D electronic structure. Both these compounds should be treated as quasi-2D materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blaise, A., Fournier, J.-M., Lagnier, R., Mortimer, M.J., Schenkel, R., Henkie, Z., and Wojakowski, A., Inst. Phys. Conf. Ser. No. 37 (1978) chapter 7, p. 184.Google Scholar
2. Cichorek, T., Henkie, Z., Gegenwart, P., Lang, M., Wojakowski, A., Dischner, M., Steglich, F., J. Magn. Magn. Mater. 226–230, 189 (2001).Google Scholar
3. Henkie, Z., Wojakowski, A., Cichorek, T., Wawryk, R., Maple, M.B., Bauer, E.D., Steglich, F., Physica C 287, 113 (2003).Google Scholar
4. Aoki, D., Wisniewski, P., Miyake, K., Watanabe, N., Inada, Y., Settai, R., Yamamoto, E., Haga, Y., and Onuki, Y., J. Phys. Soc. Jpn. 68, 2182 (1999).Google Scholar
5. Oppeneer, P.M., Brooks, M.S.S., Antonov, V.N., Kraft, T., and Eschring, H., Phys. Rev. B53, R10437 (1996).Google Scholar
6. Cichorek, T., Henkie, Z., Wojakowski, A., Pietraszko, A., Gegenwart, P., Lang, M., Steglich, F., Solid State Commun. 121, 647 (2002).Google Scholar
7. Arko, A.J., Joyce, J.J., Andrews, A.B., Mandrus, D., Moshopoulou, E., Fisk, Z., and Canfield, P.C., Phil. Mag. B 75, 603 (1997).Google Scholar
8. Arko, A.J., Joyce, J.J., Moore, D.P., Sarrao, J.L., Morales, L., Durakiewicz, T., Fisk, Z., Koelling, D.D., Olson, C.G., J. Electron Spectr. Rel. Phenom. 117–118, 323 (2001).Google Scholar