Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:47:41.669Z Has data issue: false hasContentIssue false

Electron-irradiation-induced Changes of martensitic transformation characteristics in TiNi shape memory alloys

Published online by Cambridge University Press:  01 February 2011

X. T. Zu*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
L.P. You
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
S. Zhu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Z. G. Wang
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
J. H. Wu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
L. M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
*
* Electronic mail: zuxt@sohu.com. Fax & Tel: 86 28 83201939
Get access

Abstract

TiNi shape memory alloy samples were irradiated within R-phase by 1.7 MeV electrons with different doses. The martensitic transformation temperatures were measured by Differential Scanning Calorimeter (DSC). The results indicated that the temperature M s of the onset of R-phase-to-martensite transformation decreased with increasing the dose. The electron irradiation had a slight effect on the other transformation temperatures. The second lifetime of positrons determined by Positron Annihilation Technology were lowered with an increment of the irradiated dose. Relaxation of the elastic stress fields around the Ti3Ni4 precipitates was the cause of the observed change of the transformation characteristics because of the migration and accumulation of electron irradiation-induced point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoshiya, T., Sekino, H., Matsui, Y., Sakurai, F. and Enami, K., J. Nucl. Mater., 233–237, 599(1996).Google Scholar
2. Shape Memory Materials, edited by Otsuka, K., and Wayman, C.M. (Camb. Uni. Pr., 1998), p. 4987.Google Scholar
3. Hoshiya, T., Den, S., Ito, H., Takamura, S., and Ichihashi, Y., J. Jap. Inst. Met. 55, 1054(1991).Google Scholar
4. Barbu, A., Dunlop, A., Duparc, A. H., Jaskierowicz, G., Lorenzelli, N., Nucl. Instr. and Meth. B 145, 354(1998).Google Scholar
5. Cheng, J., and Ardell, A. J., Nucl. Instr. and Meth. B 44, 336(1990).Google Scholar
6. Matsukawa, Y., and Ohnuki, S., J. Nucl. Mater. 239, 261 (1996).Google Scholar
7. Mori, H. and Fujita, H., Jpn. J. Appl. Phys., 21 (1982) L494.Google Scholar
8. Watanbe, S., Koike, T., Suda, T., Ohnuki, S., Takahashi, H. and Lam, N. Q., Phil. Mag. Lett., 81, 789 (2001).Google Scholar
9. Konopleva, R. F., Nazarkin, I. V., Solovei, V. L., Chekanov, V. A., Belyaev, S. P., Volkov, A. E. and Razov, A. I., Phys. Solid State, 40, 1550 (1998).Google Scholar
10. Dubinin, S. F., Teploukho, S. G. and Parkhomenko, V. D., Fiz. Met. Metalloved., 82, 297 (1996).Google Scholar
11. Zu, X.T., Wang, L.M., Huo, Y., Lin, L.B., Wang, Z.G., App. Phys. Lett., 80(1), 31 (2002).Google Scholar
12. Segui, C., Scr. Met. Mater. 32, 565 (1995).Google Scholar
13. Van Humbeeck, J., Janssen, J., Mwamba-Ngoie, , Delaey, L., Scr. Met. 18, 893(1984).Google Scholar
14. Shimizu, K., Nakata, Y., and Yamamoto, O.. Mater. Res. Symp. Proc. Mater. Res. Soc., 246, 43(1992).Google Scholar
15. Siegel, R. W., Positron Annihilation. Edited by Coleman, P.G., Sharma, S.C. and Diana, L.M. (North-Holland Publ. 1982), p. 351.Google Scholar
16. Hurtado, J., Segers, D., Van Humbeeck, J., Dorikens-Vanpraet, L., Dauwe, C., Scripta Metall. et Mater. 33, 741 (1995).Google Scholar
17. Bataillard, L., Bidaux, J. –E. and Gotthardt, R., Phil. Mag. A, 78, 327 (1998).Google Scholar
18. Tadaki, T., Nakata, Y., Shimizu, K. and Otsuka, K., Trans. Japan Inst. Metals, 27, 731 (1986)Google Scholar
19. Glendennin, L. E., Nucleonics 12, 2 (1948).Google Scholar
20. Liu, Y. and McCormick, P. G., Scripta Metall. et Mater. 42, 2401(1994).Google Scholar
21. Dunne, C. M. and Wayman, C. M., Met. Trans. 4, 137(1973).Google Scholar
22. Huo, Y. and Zu, X., Cont. Mech. Thermodyn. 10, 179(1998).Google Scholar
23. Goo, E. and Murthy, A., Scripta Metallurgica et Materialia. 29, 553(1993).Google Scholar
24. Zhang, J., Cai, W., Ren, X. B., Otsuka, K., and Asai, M.., Mater. T. JIM, 40, 1367 (1999)Google Scholar
25. Miyazaki, S., Igo, Y. and Otsuka, K., Acta Metall., 34, 2045 (1986).Google Scholar
26. Nishida, M. and Wayman, C. M., Metallography, 21, 255 (1988).Google Scholar